Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Sdn Type

Displaying 12 results

Traits related to biotic stress tolerance

High level of powdery mildew resistance while maintaining normal crop
growth and yields.
( Li et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Robust rust resistance to pandemic stripe rust caused by Puccinia striiformis (Pst) without growth and yield penalty.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
Northwest A&
F University
Chinese Academy of Sciences, China
Viral resistance: increased resistance against wheat yellow mosaic virus (WYMV) without yield penalty. WYMV results in severe yield losses in hexaploid wheat.
(Kan et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences (CAAS)
Agricultural Sciences Institute in Jiangsu Lixiahe Area, China
Fungal resistance: increased resistance against the fungus Puccinia striiformis f. sp. tritici (Pst). Wheat stripe rust is caused by Pst and is one of the most destructive wheat diseases, resulting in significant losses to wheat production worldwide.
(He et al., 2022)
SDN1
CRISPR/Cas
Northwest A&
F University
Hebei Agri cultural University, China
Fungal resistance to Oidium neolycopersici, causing powdery mildew, one of the most important diseases limiting the production of wheat.
( Wang et al., 2014 )
SDN1
TALENs
Chinese Academy of Sciences, China
Fungal resistance to Oidium neolycopersici, causing powdery mildew, one of the most important diseases limiting the production of wheat.
( Zhang et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Fungal resistance: resistance to Fusarium graminearum. Fusarium head blight (FHB) is an economically important disease, affecting both yield and grain quality of maize, wheat and barley.
(Brauer et al., 2020)
SDN1
CRISPR/Cas
Ottawa Research and Development Centre, Canada
Fungal resistance: enhanced resistance against powdery mildew disease.
(Xu et al., 2023)
SDN1
CRISPR/Cas
Kyungpook National University
Rural Development Administration
Sunchon National University, South Korea
Lingnan Normal University, China
Viral resistance: Strong barley yellow dwarf virusses (BYDV) resistance without negative effects on plant growth under field conditions. BYDV threatens efficient and stable production of wheat, maize, barley and oats.
(Wang et al., 2023)
SDN1
CRISPR/Cas
Henan Agricultural University
The Shennong Laboratory
Chinese Academy of Agricultural Sciences, China
Fungal resistance: stripe rust resistance, caused by Puccinia striiformis f. sp. tritici. In appropriate environmental conditions and susceptible varieties, stripe rust can cause huge grain yield and quality loss.
(Li et al., 2023)
SDN1
CRISPR/Cas
Fudan University
Chinese Academy of Sciences
University of the Chinese Academy of Sciences
China Agricultural University
Guangzhou University
School of Life Science
Shandong Academy of Agricultural Sciences
Ministry of Agriculture
National Engineering Research Center for Wheat and Maize
Sichuan Agricultural University
Nanjing Agricultural University, China
Université Paris Cité
Université Paris-Saclay, France
Fungal resistance: enhanced resistance against rust caused by Puccinia striiformis f. sp. tritici and powdery mildew caused by Blumeria graminis f. sp. tritici., while also increasing yield.
(Liu et al., 2024)
SDN1
CRISPR/Cas
Southwest University
Yangtze University, China
University of Cologne, Germany
University of Maryland
Viral resistance: enhanced resistance against wheat dwarf virus, which is a causal agent of wheat viral disease and can significantly impact wheat production worldwide.
(Yuan et al., 2024)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Northwest A&
F University, China

Norwegian Institute of Bioeconomy Research, Norway