Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 32 results

Traits related to biotic stress tolerance

Reduced aphid damage to improve crop resistance to aphids or other insects. Restrict aphid sucking on watermelon.
( Li et al., 2021 )
SDN1
CRISPR/Cas
Beijing Academy of Agricultural and Forestry Sciences, China
Fungal resistance: Fusarium oxysporum f.sp. niveum (FON), one of the most devastaging diseases affecting watermelons. FON progresses along xylem vessels, causing the hollow and dried-out stems.
(Zhang et al., 2020)
SDN1
CRISPR/Cas
Jiangsu Academy of Agricultural Sciences
Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, China
Sensitive and specific visual detection method for Acidovorax citrulli, an important seed-borne disease of the cucurbits.
( Wang et al., 2024 )
SDN1
CRISPR/Cas
Fuyang Normal University
Anhui Jianzhu University
Southern Subtropicals Grops Research Institute, China

Traits related to abiotic stress tolerance

Removal of harmful pericarp character of weedy rice while increasing drought tolerance. Weedy rice has the potential of domestication into direct-seeding rice with strong drought tolerance.
( Kong et al., 2023 )
SDN1
CRISPR/Cas
Nanjing Agricultural University, China
Improved drought and salt tolerance.
( Zhang et al., 2023 )
SDN1
CRISPR/Cas
Northeast Forestry University
Chinese Academy of Forestry
Chinese Academy of Sciences
Nanjing Forestry University, China

Traits related to improved food/feed quality

Increased sucrose content.
( Ren et al., 2020 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
Capital Normal University
China Agricultural University, China
Cornell University
Robert W. Holley Center for Agriculture and Health, USA
Decreased seed size and promoted seed germination. To improve consumer experience for flesh-consumed watermelons, no (or small and sparse) seeds are better because the flesh portion is larger.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement, China
Promoted phenolic acid biosynthesis. Salvia is tradional Chinese medicine with great medical value to treat cardio- and cerebrovascular diseases. Phenolic acids make up a big part of the bioactive compounds.
( Shi et al., 2021 )
SDN1
CRISPR/Cas
East China University of Science and Technology
Zhejiang Chinese Medical University, China
University of Hawaii at Manoa, USA
Enhanced levels of glucoraphanin. The hydrolysis product of glucoraphanin has powerful anticancer activity.
( Zheng et al., 2023 )
SDN1
CRISPR/Cas
Sichuan Agricultural University
Zhejiang University
Bijie Institute of Agricultural Science, China

Traits related to increased plant yield and growth

Bushy phenotype and increased tiller production.
( Liu et al., 2017 )
SDN1
CRISPR/Cas
Iowa State University, USA
Improve biomass yield and salinity tolerance.
( Guan et al., 2020 )
SDN1
CRISPR/Cas
China Agricultural University
Shandong institute of agricultural sustainable development
Beijing Sure Academy of Biosciences, China
Oklahoma State University, USA
Induced erect leaf habit and shoot growth for a more efficient light penetration into lower canopy layers.
( Fladung et al., 2021 )
SDN1
CRISPR/Cas
Thünen Institute of Forest Genetics, Germany
Increased formation of adventitious roots (ARs). The formation of ARs is extremely important to the large-scale vegetative propagation of elite genotypes in many economically important woody species.
( Ran et al., 2023 )
SDN1
CRISPR/Cas
Nanjing Forestry University
Yangzhou University, China
More and longer lateral roots, more xylem and increased development of secondary vascular tissues: plants more suitable for biofuel and bioenergy production.
(An et al., 2023)
SDN1
CRISPR/Cas
Zhejiang A &
F University, China
Late flowering phenotype.
( Liu et al., 2024 )
SDN1
CRISPR/Cas
China Agricultural University, China
Dwarfing phenotype.
( Sun et al., 2024 )
SDN1
CRISPR/Cas
Northwest A&
F University
Guangdong Academy of Agricultural Sciences
Shanxi Agricultural University, China

Traits related to industrial utilization

35% reduction in lignin. Fourfold increase in cellulose-to-glucose conversion upon limited saccharification. Efficient saccharification is hindered by the presence of lignin in the secondary-thickened cell walls.
( de Vries et al., 2021 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology, Belgium
Reduced lignin content and increased sugar release upon saccharification.
( De Meester et al., 2021 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology, Belgium
Improved saccharification efficiency by an altered cell wall architecture.
( Nayeri et al., 2022 )
SDN1
CRISPR/Cas
Shahid Beheshti University
University of Tabriz, Iran
Male sterility.
( Zhang et al., 2021 )
SDN1
CRISPR/Cas
Northwest A&
F University, China
Tailoring poplar lignin without yield penalty. Reduced recalcitrance.
( De Meester et al., 2020 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology
VIB Metabolomics Core, Belgium
Gynoecious phenotype: only female flowers. Advantageous trait for production of hybrid seed by bees under spatial isolation, because it avoids hand emasculation and hand pollination.
(Zhang et al., 2019)
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
Chinese Academy of Agricultural Engineering Planning and Design, China
Bio-fuel production: Reduced lignin content and improved sugar release.
(Park et al., 2017)
SDN1
CRISPR/Cas
Noble Research Institute, USA
Reduced lignin content and S (syringyl lignin)/G (guaiacyl lignin) (S/G) ratio alteration to reduce cell wall recalcitrance and improve bioethanol production. Lignin is a major component of secondary cell walls and contributes to the recalcitrance problem during fermentation.
( Park et al., 2021 )
SDN1
CRISPR/Cas
The Samuel Roberts Noble Foundation
BioEnergy Science Center
University of Tennessee, USA
Stem wood discoloration due to lignin reduction.
( Zhou et al., 2015 )
SDN1
CRISPR/Cas
University of Georgia, USA
Complete reproductive sterility to prevent the spread of highly domesticated, exotic or genetically modified organisms into wild populations.
( Azeez et al., 2021 )
SDN1
CRISPR/Cas
Michigan Technological University, USA
Establishment of maternal haploid induction. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Tian et al., 2023 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement, China
Modified wood composition with traits desirable for fiber pulping and lower carbon emissions. The edited wood could bring efficiencies, bioeconomic opportunities and environmental benefits.
( Sulis et al., 2023 )
SDN1
CRISPR/Cas
North Carolina State University
University of Illinois at Urbana-Champaign, USA
Beihua University
Northeast Forestry University, China

Traits related to herbicide tolerance

Tribenuron
( Tian et al., 2018 )

BE
Beijing Academy of Agriculture and Forestry Sciences
China Agricultural University, China

Traits related to product color/flavour

Yellow stems and leaves.
( Sun et al., 2020 )
SDN1
CRISPR/Cas
Sichuan Agricultural University
Zhejiang University, China
Albino phenotype
( Fan et al., 2015 )
SDN1
CRISPR/Cas
Southwest University
Chinese Academy of Sciences, China
Albino phenotype. Diversity in fruit color. Watermelon is an important fruit croup throughout the world.
( Tian et al., 2016 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
China Agricultural University
Beijing University of Agriculture, China