Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the current and future applications of genome editing in crops, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crops.

The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about genome editing applications in crops. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.

Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.

Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop developed for market-oriented agricultural production as a result of a genome editing.

This database will be regularly updated. Please contact us via the following webpage ( in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing.

This work has been supported by Task Force Planet Re-Imagine Europa (

Genome Editing Technique


Sdn Type

Displaying 7 results

Traits related to industrial utilization

( Jeong et al., 2021 )
Department of Biological Science
Seoul National University
Chungnam National University
Institute for Basic Science
Kangwon National University
Kyunghee University, South Korea
Delayed flowering time.
( Hong et al., 2021 )
National Institute of Agricultural Sciences, South Korea
Bio-fuel production: Reduced lignin content and improved sugar release.
(Park et al., 2017)
Noble Research Institute, USA
Reduced lignin content and S (syringyl lignin)/G (guaiacyl lignin) (S/G) ratio alteration to reduce cell wall recalcitrance and improve bioethanol production. Lignin is a major component of secondary cell walls and contributes to the recalcitrance problem during fermentation.
( Park et al., 2021 )
The Samuel Roberts Noble Foundation
BioEnergy Science Center
University of Tennessee, USA

Traits related to abiotic stress tolerance

Regulated circadian clock: circadian clock measures and conveys day length information to control rhythmic hypocotyl growth in photoperiodic conditions, to achieve optimal fitness. Mutants showed longer hypocotyls, lower core circadian clock morning component mRNA and protein levels, and a shorter circadian rhythm. Exposure to high temperature due to global warming.
(Kim et al., 2022)
National Institute of Agricultural Science
Korea Polar Research Institute
Seoul National University College of Medicine, South Korea

Traits related to increased plant yield and growth

Bushy phenotype and increased tiller production.
( Liu et al., 2017 )
Iowa State University, USA
Improve biomass yield and salinity tolerance.
( Guan et al., 2020 )
China Agricultural University
Shandong institute of agricultural sustainable development
Beijing Sure Academy of Biosciences, China
Oklahoma State University, USA