Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Sdn Type

Displaying 30 results

Traits related to increased plant yield and growth

Increased grain yield under field drought stress conditions and no yield loss under well-watered conditions.
( Shi et al., 2017 )
SDN1
CRISPR/Cas
DuPont Pioneer, USA
Early flowering under long day conditions of higher latitudes to spread production of maize over a broad range of latitudes rapidly.
( Huang et al., 2018 )
SDN1
CRISPR/Cas
University of Wisconsin, USA
Bushy phenotype and increased tiller production.
( Liu et al., 2017 )
SDN1
CRISPR/Cas
Iowa State University, USA
Improve biomass yield and salinity tolerance.
( Guan et al., 2020 )
SDN1
CRISPR/Cas
China Agricultural University
Shandong institute of agricultural sustainable development
Beijing Sure Academy of Biosciences, China
Oklahoma State University, USA
Haploid induction to accelerate breeding in crop plants.
( Kelliher et al., 2017 )
SDN1
TALENs
Syngenta Seeds, USA
Enhancing grain-yield-related traits by increases in meristem size
( Liu et al., 2021 )
SDN1
CRISPR/Cas
Cold Spring Harbor
University of Massachusetts Amherst, USA
Improved field performance: higher yield, producing on average 5.5 bushels per acre more. Waxy corn.
(Gao et al., 2020)
SDN1
CRISPR/Cas
Corteva Agriscience, USA
Altered spike architecture and grain treshability to increase grain production.
( Liu et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Bigger grains, increased grain weight.
( Zhang et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Increased plant yield due to architectural changes. Leaf inclination: maize plants with upright leaves can be planted at higher densities without shading.
(Brekke et al., 2011)
SDN1
CRISPR/Cas
Iowa State University, USA
Increased bending strength. Stalk lodging, which is generally determined by stalk strength, results in considerable yield loss and has become a primary threat to maize yield under high-density planting.
( Zhang et al., 2020 )
SDN1
CRISPR/Cas
China Agricultural University, China
Iowa State University, USA
Increased density by early-flowering phenotype under long-day conditions.
( Li et al., 2020 )
SDN1
CRISPR/Cas
Shandong Agricultural University
South China Agricultural University
Chinese Academy of Agricultural Sciences
Guangdong Laboratory for Lingnan Modern Agriculture, China
Semi-dwarf phenotype with increased lodging resistance.
( Zhang et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Improvement for larger kernel and yield.
( Ma et al., 2015 )
SDN1
CRISPR/Cas
Northwest A &
F University
Chinese Academy of Agricultural Sciences, China
Increased spikelet number and delayed heading date. Two traits that are crucial and correlated to yield in wheat.
( Chen et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Increased yield potential trough improved nitrogen use efficiency. Enhanced tolerance to N starvation, and showed delayed senescence and increased grain yield in field conditions. Lowered use of N fertilizer.
( Zhang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Zhengzhou University, China
Increased tassel branch number (TBN), one of the important agronomic traits that contribute to the efficiency of seed production.
( Guan et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Increased grain weight and grain size. Carbohydrate and total protein levels also increased.
( Guo et al., 2021 )
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
University of California, USA
Increased yield: plants produced more tillers and grains than azygous wild-type controls and the total yield was increased up to 15 per cent.
(Holubova et al., 2018)
SDN1
CRISPR/Cas
Palacký University
Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Republic
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Germany
Increased water use efficiency, a promising approach for achieving sustainable crop production in changing climate scenarios.
( Blankenagel et al., 2022 )
SDN1
CRISPR/Cas
Technical University of Munich
Max Planck Institute of Molecular Plant Physiology
Helmholtz Center Munich
Heinrich Heine University Düsseldorf, Germany
Improves complex traits such as yield and drought tolerance.
( Lorenzo et al., 2022 )
SDN1
CRISPR/Cas
Center for Plant Systems Biology
Ghent University
Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Belgium
Increased total kernel number or kernel weight.
( Kelliher et al., 2019 )
SDN1
CRISPR/Cas
Research Triangle Park
University of Georgia, USA
Syngenta Crop Protection, The Netherlands
Increase in 1000-grain weight, grain area, grain width, grain length, plant height, and spikelets per spike.
( Errum et al., 2023 )
SDN1
CRISPR/Cas
National Agricultural Research Centre (NARC)
PARC Institute of Advanced Studies in Agriculture (PIASA)
Pakistan Agricultural Research Council, Pakistan
Early heading. Heading date is an important agronomic trait that affects climatic adaptation and yield potential.
( Fan et al., 2023 )
SDN1
CRISPR/Cas
Henan Agricultural University, China
Enhanced grain yield and semi-dwarf phenotype by manipulating brassinosteroid signal pathway.
( Song et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University, China
Hard Winter Wheat Genetics Research Unit, USA
Enlarged grain phenotype.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Hebi Academy of Agricultural Sciences
Henan Agricultural University, China
Altered root architecture with increased tillers and total grain weight.
( Rahim et al., 2023 )
SDN1
CRISPR/Cas
Quaid-e-Azam University
National Agricultural Research Centre (NARC)
The University of Haripur, Pakistan
King Saud University, Saudi Arabia
Nile University
Ain Shams University, Egypt
Chonnam National University, South Korea
Late flowering phenotype.
( Liu et al., 2024 )
SDN1
CRISPR/Cas
China Agricultural University, China
Increased plant height with an earlier heading date.
( Fu et al., 2024 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Henan Normal University
Sichuan Agricultural University
Henan Agricultural University
Shanxi University, China
Increased tiller number.
( Awan et al., 2024 )
SDN1
CRISPR/Cas
National Institute for Biotechnology and Genetic Engineering
Quaid-i-Azam University, Pakistan