Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Displaying 29 results

Traits related to biotic stress tolerance

Viral resistance: Enhanced resistance to sweet potato virus disease (SPVD). SPVD is caused by the co-infection of sweet potato chlorotic stunt virus (SPCSV) and sweet potato feathery mottle virus.
(Yu et al., 2021)
SDN1
CRISPR/Cas
Jiangsu Normal University
Jiangsu Academy of Agricultural Sciences
Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, China
Visualization of the early stages of Cassava bacterial blight (CBB) infection in vivo. CBB is caused by Xanthomonas axonopodis pv. Manihotis.
( Veley et al., 2021 )
SDN2
CRISPR/Cas
Donald Danforth Plant Science Center, USA
National Root Crops Research Institute, Nigeria
Viral resistance: reduced cassava brown streak disease (CBSD) symptom severity and incidence. CBSD threatens cassava production in West Africa and is a major constraint on cassava production in East and Central Africa.
(Gomez et al., 2019)
SDN1
CRISPR/Cas
University of California
Donald Danforth Plant Science Center, USA
Rapid detection of Sclerotium rolfsii, the causal agent of stem and root rot disease. This technique is effective for identification of pathogens, with potential for on-site testing.
( Changtor et al., 2023 )
SDN1
CRISPR/Cas
Naresuan University, Thailand
Fungal resistance: enhanced resistance against powdery mildew disease.
(Xu et al., 2023)
SDN1
CRISPR/Cas
Kyungpook National University
Rural Development Administration
Sunchon National University, South Korea
Lingnan Normal University, China

Traits related to improved food/feed quality

Improved starch quality. Reduced amylopectin and increased amylose percentage.
( Wang et al., 2019 )
SDN1
CRISPR/Cas
Shanghai Institutes for Biological Sciences
Shanghai Sanshu Biotechnology Co. LTD
Chinese Academy of Science, China
University of Kentucky, USA
High-amylose content (up to 56% in apparent amylose content) and resistant starch (up to 35%).
( Luo et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Shanghai Sanshu Biotechnology Co.,
Guangxi Subtropical Crops Research Institute, China
Fine-tuning sugar content. Consumer preference varies along regional, cultural, and age lines, thus the solution is to create a continuum of phenotypic “taste” changes
( Xing et al., 2020 )

BE
Chinese Academy of Sciences
China Agricultural University, China
Attenuated toxic cyanogen production. Cassava produces toxic cyanogenic compounds and requires food processing for safe consumption.
( Gomez et al., 2021 )
SDN1
CRISPR/Cas
University of California
Donald Danforth Plant Science Center
Lawrence Berkeley National Laboratory
Okinawa Institute of Science and Technology Graduate University
Chan-Zuckerberg BioHub, USA
Improvement of starch quality.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Science

Shanghai Sanshu Biotechnology Co.
LTD, China
University of Kentucky, USA
Reduce or eliminate amylose content in root starch. Amylose influences the physicochemical properties of starch during cooking and processing.
( Bull et al., 2018 )
SDN1
CRISPR/Cas
Institute of Molecular Plant Biology, Switzerland
Increased phosphorus and anthocyanin content.
( Zhang et al., 2023 )
SDN1
CRISPR/Cas
Shenyang Agricultural University
Ministry of Education, China
Increased phosphorus content and improved fruit quality.
( Zhang et al., 2023 )
SDN1
CRISPR/Cas
Shenyang Agricultural University
Ministry of Education, China

Traits related to increased plant yield and growth

Bushy phenotype and increased tiller production.
( Liu et al., 2017 )
SDN1
CRISPR/Cas
Iowa State University, USA
Improve biomass yield and salinity tolerance.
( Guan et al., 2020 )
SDN1
CRISPR/Cas
China Agricultural University
Shandong institute of agricultural sustainable development
Beijing Sure Academy of Biosciences, China
Oklahoma State University, USA
Faster seedling growth.
( Zhou et al., 2018 )
SDN1
CRISPR/Cas
University of Maryland, USA
Transformation of a climbing woody perennial, developing axillary inflorescences after many years of juvenility, into a compact plant with rapid terminal flower and fruit development.
( Varkonyi-Gasic et al., 2022 )
SDN1
CRISPR/Cas
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research), University of Auckland, New Zealand
Late flowering phenotype.
( Liu et al., 2024 )
SDN1
CRISPR/Cas
China Agricultural University, China

Traits related to industrial utilization

Bio-fuel production: Reduced lignin content and improved sugar release.
(Park et al., 2017)
SDN1
CRISPR/Cas
Noble Research Institute, USA
Reduced lignin content and S (syringyl lignin)/G (guaiacyl lignin) (S/G) ratio alteration to reduce cell wall recalcitrance and improve bioethanol production. Lignin is a major component of secondary cell walls and contributes to the recalcitrance problem during fermentation.
( Park et al., 2021 )
SDN1
CRISPR/Cas
The Samuel Roberts Noble Foundation
BioEnergy Science Center
University of Tennessee, USA
Accelerate flowering, a rare event under glasshouse conditions. Modified starch.
( Bull et al., 2018 )
SDN3
CRISPR/Cas
Institute of Molecular Plant Biology, Switzerland
Smaller petunia plants with high flower abundance.
( Abdulla et al., 2024 )
SDN1
CRISPR/Cas
Ondokuz Mayis University, Turkey
Agricultural Research Center (ARC), Egypt

Traits related to herbicide tolerance

Herbicide tolerance: glyphosate
(Hummel et al., 2017)
SDN3
CRISPR/Cas
Donald Danforth Plant Science Center, St. Louis, USA

Traits related to product color/flavour

Albino phenotype.
( Wilson et al., 2019 )
SDN1
CRISPR/Cas
NIAB EMR, UK
Albino phenotype.
( Wang et al., 2018 )
SDN1
CRISPR/Cas
Provincial Key Laboratory of Applied Botany
Guangdong Provincial Key Laboratory of Applied Botany
University of Chinese Academy of Sciences, China
Flower color modification to a pale purplish pink flower color compared to the purple violet wild type.
( Yu et al., 2021 )
SDN1
CRISPR/Cas
Hanyang University
Chungnam National University, South Korea
Reduced citrate content. Citrate is a common primary metabolite which often characterizes fruit flavour.
( Fu et al., 2023 )
SDN1
CRISPR/Cas
Zhejiang University, China
University of Florida, USA
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research) Mt Albert
University of Auckland, New Zealand

Traits related to storage performance

Enhancement of flowering time. Petunia has become popular in the floriculture industry, however it is sensitive to ethylene, which causes flower senescence.
( Xu et al., 2021 )
SDN1
CRISPR/Cas
Kyungpook National University
Kangwon National University, South Korea
Extended root shelf-life, which decreases its wastage.
( Mukami et al., 2023 )
SDN1
CRISPR/Cas
Kenyatta University
Jomo Kenyatta University of Agriculture Technology
Pwani University Kilifi, Kenya