Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Displaying 8 results

Traits related to increased plant yield and growth

Early flowering. Certain mutants also showed following phenotypes: determinate flowering, shorter stature and/or basal branching.
(Bellec et al., 2022)
SDN1
CRISPR/Cas
Université Paris-Saclay, France
Increases size of starch granules. Granule size is a key parameter for industrial processing. Larger granules may increase yield during processing and it has been shown in sweet potato that smaller starch granules degrade faster than large granules, so larger granule tubers may be beneficial for storage.
( Pfotenhauer et al., 2023 )
SDN1
CRISPR/Cas
University of Tennessee, USA
Increased plant height, longer roots, smaller root growth angle and increased tuber weight.
( Zhao et al., 2024 )
SDN1
CRISPR/Cas
Yunnan Agricultural University
Chinese Academy of Sciences
Xuanhan County Plant Quarantine Station
Yuguopu District Agricultural Comprehensive Service Center
Ning'
er County Plant Protection and Plant Quarantine Station, China

Traits related to industrial utilization

Increased monounsaturated fatty acid contents (MUFAs). Due to their higher thermal-oxidative stability and viscosity relative to other common fatty acids, MUFAs are preferred for industrial uses, for example as biolubricants and biodiesel fuels.
( Lee et al., 2021 )
SDN1
CRISPR/Cas
National Institute of Agricultural Sciences
Korea Advanced Institute of Science and Technology
Chonnam National University
Plant Engineering Research Institute, South Korea
Generate self-compatible diploid potato lines for the application of efficient breeding methods.
( Enciso-Rodriguez et al., 2021 )
SDN1
CRISPR/Cas
Michigan State University, USA
Generate self-compatible diploid potato lines for the application of efficient breeding methods.
( Eggers et al., 2021 )
SDN3
CRISPR/Cas
Solynta
Wageningen University &
Research, The Netherlands
Smaller petunia plants with high flower abundance.
( Abdulla et al., 2024 )
SDN1
CRISPR/Cas
Ondokuz Mayis University, Turkey
Agricultural Research Center (ARC), Egypt
Enhanced oil accumulation in the seed.
( Cai et al., 2024 )
SDN1
CRISPR/Cas
Brookhaven National Laboratory
Stony Brook University
Montana State University, USA