Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Displaying 25 results

Traits related to biotic stress tolerance

Reduced aphid damage to improve crop resistance to aphids or other insects. Restrict aphid sucking on watermelon.
( Li et al., 2021 )
SDN1
CRISPR/Cas
Beijing Academy of Agricultural and Forestry Sciences, China
Fungal resistance: Fusarium oxysporum f.sp. niveum (FON), one of the most devastaging diseases affecting watermelons. FON progresses along xylem vessels, causing the hollow and dried-out stems.
(Zhang et al., 2020)
SDN1
CRISPR/Cas
Jiangsu Academy of Agricultural Sciences
Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, China
Bacterial resistance: enhanced resistance to Xanthomonas citri, causing citrus canker, one of the most serious diseases affecting the global citrus industry.
(Long et al., 2021)
SDN1
CRISPR/Cas
Southwest University/Chinese Academy of Agricultural Sciences, China
Bacterial resistance: Xanthomonas citri, causing citrus canker, one of the most serious diseases affecting the global citrus industry. Citrus is the most produced fruit in the world.
(Peng et al., 2017)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences and National Center for Citrus Variety Improvement
Southwest University, China
Viral resistance: Improved resistance to yellow leaf curl virus, a virus responsible for heavy yield losses for chili peper production.
(Kurniawati et al., 2020)
SDN1
CRISPR/Cas
Institut Pertanian Bogor
Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian, Indonesia
Fungal resistance: increased resistance to Phytophthora tropicalis. Severe outbreaks can destroy all cacao fruit on a farm. Each year, global cacao production is destroyed with 20-30% by pathogens.
(Fister et al., 2018)
SDN1
CRISPR/Cas
Pennsylvania State University, USA
Fungal resistance: Resistance to pathogen Colletotrichum truncatum, causing anthracnose, a major disease accounting for significant pre- and post-harvest yield losses.
(Mishra et al., 2021)
SDN1
CRISPR/Cas
Centurion University of Technology and Management
Siksha O Anusandhan University
Rama Devi Women'
s University, India
Sensitive and specific visual detection method for Acidovorax citrulli, an important seed-borne disease of the cucurbits.
( Wang et al., 2024 )
SDN1
CRISPR/Cas
Fuyang Normal University
Anhui Jianzhu University
Southern Subtropicals Grops Research Institute, China

Traits related to improved food/feed quality

Increased sucrose content.
( Ren et al., 2020 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
Capital Normal University
China Agricultural University, China
Cornell University
Robert W. Holley Center for Agriculture and Health, USA
Decreased seed size and promoted seed germination. To improve consumer experience for flesh-consumed watermelons, no (or small and sparse) seeds are better because the flesh portion is larger.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement, China

Traits related to increased plant yield and growth

Bushy phenotype and increased tiller production.
( Liu et al., 2017 )
SDN1
CRISPR/Cas
Iowa State University, USA
Improve biomass yield and salinity tolerance.
( Guan et al., 2020 )
SDN1
CRISPR/Cas
China Agricultural University
Shandong institute of agricultural sustainable development
Beijing Sure Academy of Biosciences, China
Oklahoma State University, USA
Altered tree architecture, exhibited pleiotropic phenotypes: including differences in branch angle and stem growth.
(Dutt et al., 2022)
SDN1
CRISPR/Cas
University of Florida, USA
Mansoura University, Egypt
Late flowering phenotype.
( Liu et al., 2024 )
SDN1
CRISPR/Cas
China Agricultural University, China
Dwarfing phenotype.
( Sun et al., 2024 )
SDN1
CRISPR/Cas
Northwest A&
F University
Guangdong Academy of Agricultural Sciences
Shanxi Agricultural University, China

Traits related to industrial utilization

Male sterility.
( Zhang et al., 2021 )
SDN1
CRISPR/Cas
Northwest A&
F University, China
Gynoecious phenotype: only female flowers. Advantageous trait for production of hybrid seed by bees under spatial isolation, because it avoids hand emasculation and hand pollination.
(Zhang et al., 2019)
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
Chinese Academy of Agricultural Engineering Planning and Design, China
Bio-fuel production: Reduced lignin content and improved sugar release.
(Park et al., 2017)
SDN1
CRISPR/Cas
Noble Research Institute, USA
Reduced lignin content and S (syringyl lignin)/G (guaiacyl lignin) (S/G) ratio alteration to reduce cell wall recalcitrance and improve bioethanol production. Lignin is a major component of secondary cell walls and contributes to the recalcitrance problem during fermentation.
( Park et al., 2021 )
SDN1
CRISPR/Cas
The Samuel Roberts Noble Foundation
BioEnergy Science Center
University of Tennessee, USA
Establishment of maternal haploid induction. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Tian et al., 2023 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement, China

Traits related to herbicide tolerance

Glyphosate resistance.
( Ortega et al., 2018 )
SDN2
CRISPR/Cas
New Mexico State University, USA
Tribenuron
( Tian et al., 2018 )

BE
Beijing Academy of Agriculture and Forestry Sciences
China Agricultural University, China

Traits related to product color/flavour

Albino phenotype.
( Yeap et al., 2021 )
SDN1
CRISPR/Cas
Sime Darby Plantation Technology Centre Sdn. Bhd.
Sime Darby Plantation Research Sdn. Bhd., Malaysia
Anthocyanin-rich and pigmented sweet oranges.
( Salonia et al., 2022 )
SDN1
CRISPR/Cas
Research Centre for Olive Fruit and Citrus Crops
University of Catania
Research and Innovation Centre Trento, Italy
Albino phenotype. Diversity in fruit color. Watermelon is an important fruit croup throughout the world.
( Tian et al., 2016 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
China Agricultural University
Beijing University of Agriculture, China