Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Displaying 17 results

Traits related to biotic stress tolerance

Oomycete resistance: significantly reduced susceptibility to downy mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Zhang et al., 2021)
SDN1
CRISPR/Cas
The State University of New Jersey, USA
Enhanced resistance to downy mildew pathogen.
( Hasley et al., 2021 )
SDN1
CRISPR/Cas
University of Hawaii at Manoa, USA
Fungal resistance: increased resistance to Phytophthora tropicalis. Severe outbreaks can destroy all cacao fruit on a farm. Each year, global cacao production is destroyed with 20-30% by pathogens.
(Fister et al., 2018)
SDN1
CRISPR/Cas
Pennsylvania State University, USA
Visualization of the early stages of Cassava bacterial blight (CBB) infection in vivo. CBB is caused by Xanthomonas axonopodis pv. Manihotis.
( Veley et al., 2021 )
SDN2
CRISPR/Cas
Donald Danforth Plant Science Center, USA
National Root Crops Research Institute, Nigeria
Viral resistance: reduced cassava brown streak disease (CBSD) symptom severity and incidence. CBSD threatens cassava production in West Africa and is a major constraint on cassava production in East and Central Africa.
(Gomez et al., 2019)
SDN1
CRISPR/Cas
University of California
Donald Danforth Plant Science Center, USA
Rapid detection of Sclerotium rolfsii, the causal agent of stem and root rot disease. This technique is effective for identification of pathogens, with potential for on-site testing.
( Changtor et al., 2023 )
SDN1
CRISPR/Cas
Naresuan University, Thailand
Oomycete resistance: resistance against downly mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Laura et al., 2023)
SDN1
CRISPR/Cas
Research Centre for Vegetable and Ornamental Crops
Institute of Agricultural Biology and Biotechnology
Institute for Sustainable Plant Protection
Research Centre for Olive Fruit and Citrus Crops
University of Pisa
Center for Agricultural Experimentation and Assistance
Institute of Biosciences and Bioresources, Italy

Traits related to improved food/feed quality

High-amylose content (up to 56% in apparent amylose content) and resistant starch (up to 35%).
( Luo et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Shanghai Sanshu Biotechnology Co.,
Guangxi Subtropical Crops Research Institute, China
Attenuated toxic cyanogen production. Cassava produces toxic cyanogenic compounds and requires food processing for safe consumption.
( Gomez et al., 2021 )
SDN1
CRISPR/Cas
University of California
Donald Danforth Plant Science Center
Lawrence Berkeley National Laboratory
Okinawa Institute of Science and Technology Graduate University
Chan-Zuckerberg BioHub, USA
Reduce or eliminate amylose content in root starch. Amylose influences the physicochemical properties of starch during cooking and processing.
( Bull et al., 2018 )
SDN1
CRISPR/Cas
Institute of Molecular Plant Biology, Switzerland

Traits related to increased plant yield and growth

Conferred lodging resistance. Tef is a staple food, and valuable cash crop in Ethiopia. Lodging is a major limitation to its production.
( Beyene et al., 2022 )
SDN1
CRISPR/Cas
Donald Danforth Plant Science Center
Corteva Agriscience
Michigan State University, USA
Ethiopian Institute of Agricultural Research, Ethiopia
Various phenotypic changes were observed of which traits such as plant dwarfing, color, shape, and weight, early flowering, a high number of flowers and early fruit set and maturation, fewer seeds, and reduced and delayed browning of fruits are agronomically important.
( Kodackattumannil et al., 2023 )
SDN1
CRISPR/Cas
United Arab Emirates University, United Arab Emirates

Traits related to industrial utilization

Accelerate flowering, a rare event under glasshouse conditions. Modified starch.
( Bull et al., 2018 )
SDN3
CRISPR/Cas
Institute of Molecular Plant Biology, Switzerland

Traits related to herbicide tolerance

Herbicide tolerance: glyphosate
(Hummel et al., 2017)
SDN3
CRISPR/Cas
Donald Danforth Plant Science Center, St. Louis, USA

Traits related to product color/flavour

Albino phenotype.
( Phad et al., 2023 )
SDN1
CRISPR/Cas
Plant Biotechnology Research Center, India

Traits related to storage performance

Reduced fruit flesh browning. The browning of eggplant berry flesh after cutting has a negative impact on fruit quality for both industrial transformation and fresh consumption.
( Maioli et al., 2020 )
SDN1
CRISPR/Cas
University of Torino, Italy
Instituto de Biologica Molecular y Celular de Plantas (IBMCP)
Universitat Politècnica de València, Spain
Extended root shelf-life, which decreases its wastage.
( Mukami et al., 2023 )
SDN1
CRISPR/Cas
Kenyatta University
Jomo Kenyatta University of Agriculture Technology
Pwani University Kilifi, Kenya