Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 20 results

Traits related to biotic stress tolerance

Fungal resistance: Reduced pathogenicity to the oomycete Phytophthora palmivora, a destructive pathogen that infects all parts of papaya plants. Increased papain sensitvity of in-vitro growth. Papaya fruits contain papain, a cysteine protease that mediates plant defense against pathogens and insects.
(Gumtow et al., 2018)
SDN1
CRISPR/Cas
University of Hawaii at Manoa, USA
Mutants were compromised in infectivity of Phytophthora palmivora, a destructive oomycete plant pathogen with a wide host range
( Pettongkhao et al., 2022 )
SDN1
CRISPR/Cas
Prince of Songkla University, Thailand
University of Hawaii at Manoa
East-West Center, USA
Sainsbury Laboratory Cambridge University (SLCU), UK
Detection assay for brassica yellows virus (BrYV) detection. BrYV is an economically important virus threatening cruciferous species.
( Xu et al., 2024 )
SDN1
CRISPR/Cas
Guizhou University
Guizhou Academy of Tobacco Sciences
Guizhou Academy of Agricultural Sciences, China
Rapid detection system for Paracoccus marginatus, an insect that can cause huge crop losses.
( Chen et al., 2024 )
SDN1
CRISPR/Cas
Fujian Academy of Agricultural Sciences, China
UMR ISA, France

Traits related to increased plant yield and growth

Bushy phenotype and increased tiller production.
( Liu et al., 2017 )
SDN1
CRISPR/Cas
Iowa State University, USA
Improve biomass yield and salinity tolerance.
( Guan et al., 2020 )
SDN1
CRISPR/Cas
China Agricultural University
Shandong institute of agricultural sustainable development
Beijing Sure Academy of Biosciences, China
Oklahoma State University, USA
Dwarf phenotype.
( Lawrenson et al., 2015 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Murdoch University, USA
Conferred lodging resistance. Tef is a staple food, and valuable cash crop in Ethiopia. Lodging is a major limitation to its production.
( Beyene et al., 2022 )
SDN1
CRISPR/Cas
Donald Danforth Plant Science Center
Corteva Agriscience
Michigan State University, USA
Ethiopian Institute of Agricultural Research, Ethiopia
Various phenotypic changes were observed of which traits such as plant dwarfing, color, shape, and weight, early flowering, a high number of flowers and early fruit set and maturation, fewer seeds, and reduced and delayed browning of fruits are agronomically important.
( Kodackattumannil et al., 2023 )
SDN1
CRISPR/Cas
United Arab Emirates University, United Arab Emirates
Late flowering phenotype.
( Liu et al., 2024 )
SDN1
CRISPR/Cas
China Agricultural University, China

Traits related to industrial utilization

Albino phenotype, self-incompatibility and male sterility.
( Ma et al., 2019 )
SDN1
CRISPR/Cas
Southwest University, China
Bio-fuel production: Reduced lignin content and improved sugar release.
(Park et al., 2017)
SDN1
CRISPR/Cas
Noble Research Institute, USA
Reduced lignin content and S (syringyl lignin)/G (guaiacyl lignin) (S/G) ratio alteration to reduce cell wall recalcitrance and improve bioethanol production. Lignin is a major component of secondary cell walls and contributes to the recalcitrance problem during fermentation.
( Park et al., 2021 )
SDN1
CRISPR/Cas
The Samuel Roberts Noble Foundation
BioEnergy Science Center
University of Tennessee, USA

Traits related to product color/flavour

Color change of the taproot from orange to pink-orange and slightly higher content of α-carotene in the taproot.
( Li et al., 2022 )
SDN1
CRISPR/Cas
Nanjing Agricultural University
Chinese Academy of Agricultural Science, China
Albino phenotype.
( Brewer et al., 2022 )
SDN1
CRISPR/Cas
University of Florida, USA
Purple color.
( Xu et al., 2019 )
SDN1
CRISPR/Cas
Nanjing Agricultural University, China
Color modification due to reduced anthocyanin accumulation.
( Klimek-Chodacka et al., 2018 )
SDN1
CRISPR/Cas
University of Agriculture in Krakow, Poland
East Carolina University
University of Maryland, USA
Pale purple phenotype due to dramatic decrease of anthocyanins content.
( Duan et al., 2023 )
SDN1
CRISPR/Cas
College of Horticulture, China
Albino phenotype.
( Phad et al., 2023 )
SDN1
CRISPR/Cas
Plant Biotechnology Research Center, India

Traits related to storage performance

Reduced fruit flesh browning. The browning of eggplant berry flesh after cutting has a negative impact on fruit quality for both industrial transformation and fresh consumption.
( Maioli et al., 2020 )
SDN1
CRISPR/Cas
University of Torino, Italy
Instituto de Biologica Molecular y Celular de Plantas (IBMCP)
Universitat Politècnica de València, Spain