Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Displaying 72 results

Traits related to biotic stress tolerance

Viral resistance: increased resistance to infection with the potato virus Y (PVY) and tolerance to salt and osmotic stress. PVY is one of the most economically important potato pathogens
(Makhotenko et al., 2019)
SDN1
CRISPR/Cas
Russia Moscow State University, Russia
Doka Gene Technologies Ltd, USA
Broad-spectrum resistance against multiple Potato virus Y (PVY)-strains.
( Noureen et al., 2022 )
SDN1
CRISPR/Cas
Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS)
University Institute of Biochemistry and Biotechnology (UIBB), Pakistan
Increased resistance to drought stress by enhancing antioxidant capacity and defence system.
( Gao et al., 2022 )
SDN1
CRISPR/Cas
Henan Agricultural University
China Tobacco Sichuan Industrial Co., China
Viral resistance: enhanced Potato virus Y (PVY) resistance. PVY infection can result in up to 70% yield loss globally.
(Le et al., 2022)
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology, Vietnam
University of Edinburgh, UK
Enhanced resistance to powdery mildew.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences Institute of Tobacco Research, China
Viral resistance: reduced viral accumulation and amelioration of virus-induced symptoms by Potato Virus Y.
(Lucioli et al., 2022)
SDN1
CRISPR/Cas
ENEA
Council for Agricultural Research and Economics (CREA), Italy
National Agricultural Research and Innovation Centre, Hungary
Viral resistance: Resistance to Potato Virus Y (PVY), one of the most devastating viral pathogens causing substantial harvest losses.
(Zhan et al., 2019)

CRISPR/Cas
Hubei University
Huazhong Agricultural University, China
Max‐Planck‐Institut für Molekulare Pflanzenphysiologie, Germany
Fungal resistance: increased resistance to Phytophthora infestans, causing late blight disease, the most serious disease of potato crops worldwide. The pathogen can infect the leaves, stems and tubers of potato plants. An unprotected field can be completely destroyed in several days.
(Kieu et al., 2021)
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
University of Copenhagen, Denmark
Viral resistance: highly resistant to viral infection with beet severe curly top virus (BSCTV), a geminivirus that can cause serious damage to many crop plants.
(Ji et al., 2015)
SDN1
CRISPR/Cas
University of Chinese Academy of Sciences, China
Viral resistance: Attenuated infection symptoms and reduced viral RNA accumulation, specific for the cucumber mosaic virus (CMV) or tobacco mosaic virus (TMV).
(Zhang et al., 2018)
SDN1
CRISPR/Cas
South China Agricultural University, China
University of Missouri, USA
Viral resistance: resistance to potato virus Y (PVY), one of the most economically and scientifically important plant viruses, causing damaging diseases of cultivated tobacco around the world.
(Ruyi et al., 2021)
SDN1
CRISPR/Cas
Mudanjiang Teachers College
Jilin Normal University
Mudanjiang Tobacco Research Institute, China
Viral resistance: to Cotton Leaf Curl Kokhran Virus, causing Cotton leaf curl disease (CLCuD), a very devastating and prevalent disease. CLCuD causes huge losses to the textile and other industries.
(Hamza et al., 2021)
SDN1
CRISPR/Cas
National Institute for Biotechnology and Genetic Engineering, Pakistan
Viral resistance: increased resistance against Tobacco Mosaic Virus (TMV).
(Jogam et al., 2023)
SDN1
CRISPR/Cas
Kakatiya University
Center of Innovative and Applied Bioprocessing (DBT-CIAB), India
University of Minnesota
East Carolina University, USA
Fungal resistance: enhanced resistance to Golovinomyces cichoracearum, which causes powdery mildew.
(Wang et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Linyi Tobacco Company
Tobacco Research Institute of Hubei Province
China Tobacco Hunan Industrial Co., China
Visual detection of Alternaria solani, the causal agent of early blight in potato, which poses a persistant threat to potato production worldwide. The platform is specific, sensitive and suitable for high-throughput detection.
( Guo et al., 2023 )
SDN1
CRISPR/Cas
Jilin University
Jilin Agricultural University
Shenzhen Campus of Sun Yat-sen University, China
Viral resistance: Resistance against potato leaf roll virus, potato virus Y, potato virus X and potato virus S, which have been recognized as the major potato viruses.
(Zhan et al., 2023)
SDN1
CRISPR/Cas
Hubei University
Huazhong Agricultural University
Chinese Academy of Agricultural Sciences, China
Fungal resistance: Improved resistance against Phytophtora without affecting potato growth and development.
(Bi et al., 2023)
SDN1
CRISPR/Cas
China Agricultural University
South China Agricultural University
Shanghai Normal University
Nanjing Agricultural University, China
Fast and accurate field screening and differentiation of four major Tobamoviruses infecting tomato and pepper. Tomatoviruses are the most important viruses infecting plants and cause huge economic losses to tomato and pepper crops globally.
( Zhao et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Inspection and Quarantine
China Agricultural University, China
Fungal and bacterial resistance: Increased resistance to late blight pathogen Phytophthora infestans, common scab, and the early blight pathogen Alternaria solani.
(Karlsson et al., 2024)
SDN1
CRISPR/Cas
University of Agricultural Sciences, Sweden
Bacterial resistance: Enhanced resistance against Candidatus Liberibacter spp., which causes significant economic losses globally.
(Ramasamy et al., 2024)
SDN1
CRISPR/Cas
Texas A&
M AgriLife Research and Extension Center
Texas A&
M University
Texas A&
M AgriLife, USA
Viral resistance: improved resistance against a tobamovirus, which could threaten tomato, tobacco, potato and squash plants.
(Miyoshi et al., 2024)
SDN1
CRISPR/Cas
Ehime University
Ehime Research Institute of Agriculture, Japan

Traits related to abiotic stress tolerance

Increased tolerance to drought trough reducing water loss. Tuber development.
( Gonzales et al., 2020 )
SDN1
CRISPR/Cas
Wageningen University and Research, The Netherlands
Centro Nacional de Biotecnología – CSIC
Universidad Politécnica de Madrid (UPM), Spain
Improved Cadmium (Cd)-tolerance by reducing the Cd transport from vacuole to cytosol in tobacco leaves.
( Jia et al., 2022 )
SDN1
CRISPR/Cas
Henan Agricultural University
Xiamen University, China
Increased drought tolerance.
( Xu et al., 2023 )
SDN1
CRISPR/Cas
R&
D Center of China Tobacco Yunnan Industrial Co. Ltd.
Sichuan Agriculture University, China
Increased tolerance to cold stress.
( Teper-Bamnolker et al., 2022 )
SDN1
CRISPR/Cas
The Volcani Institute
The Hebrew University of Jerusalem
Danziger Innovations Limited, Israel
Enhanced resistance to drought stress with increased osmotic adjustment, antioxidant activity, photosynthetic efficiency and decreased water loss rate.
( Liu et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Tobacco Research Institute
Key Laboratory of Tobacco Genetic Improvement and Biotechnology
Shenzhen Yupeng Technology Co.
Sichuan Tobacco Corporation, China
Reduced cadmium (Cd) accumulation and enhanceed Cd resistance. Cd accumulation in the edible parts of the plant pose potential risks to human health.
( Zheng et al., 2024 )
SDN1
CRISPR/Cas
Zhengzhou Tobacco Research Institute of CNTC
China Tobacco Yunnan Industrial Co. LTD
Beijing Life Science Academy (BLSA)
Zhengzhou University, China

Traits related to improved food/feed quality

Amylose-free starch in tubers.
( Toinga-Villafuerte et al., 2022 )
SDN1
CRISPR/Cas
Texas A&
M University, USA
Mutant cell lines doubled the accumulation level of anthocyanins biosynthesized. The production of these important pigments was stabilized over time.
( D'Amelia et al., 2022 )
SDN1
CRISPR/Cas
National Research Council of Italy
University of Naples Federico II
Council for Agricultural Research and Economics, Italy
Reduced browning and acrylamide. Acrylamide is a contaminant which forms during the baking, toasting and high-temperature processing of foods and is regarded as a potential carcinogen and neurotoxin.
( Nguyen Phuoc Ly et al., 2023 )
SDN1
CRISPR/Cas
Murdoch University, Australia
Improved cold storage and processing traits: lower levels of reduced sugars
(Yasmeen et al., 2022)
SDN1
CRISPR/Cas
University of the Punjab, Pakistan
Ultra-low nicotine level
( Burner et al., 2022 )
SDN1
CRISPR/Cas
North Carolina State University, USA
Improved cadmium tolerance by reducing the Cd transport from vacuole to cytosol in tobacco leaves.
( Jia et al., 2022 )
SDN1
CRISPR/Cas
Henan Agricultural University
Xiamen University, China
Negligible levels of the possibly toxic steroidal glykoalkaloids (SGAs), but enhanced levels of steroidal saponins, which has pharmaceutically useful functions.
( Akiyama et al., 2017 )
SDN1
CRISPR/Cas
Kobe University
Riken Center for Sustainable Resource Science
Osaka University, Japan
Improved starch quality. Starch has many food and technical applications and is often modified to certain specifications.
( Andersson et al., 2017 )
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
Altered starch properties. Changes in amylopectin chain-lengths, starch granule initiation and branching frequency.
( Tuncel et al., 2019 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Removing the major allergen to tackle food allergies.
( Assou et al., 2021 )
SDN1
CRISPR/Cas
Leibniz Universität Hannover
Technische Universität Braunschweig, Germany
Reduced steroidal glycoalkaloids.
( Yasumoto et al., 2019 )

TALENs
Osaka University
RIKEN Center for Sustainable Resource Science
Kobe University, Japan
Reduction of harmful ingredients: toxic steroidal glycoalkaloids (SGAs).
(Sawai et al., 2014)
SDN1
TALENs
RIKEN Center for Sustainable Resource Science
Chiba University, Japan
Complete abolition of glycoalkaloids, causing a bitter taste and toxic to various organisms.
( Nakayasu et al., 2018 )
SDN1
CRISPR/Cas
Kobe University, Japan
Starch with an increased amylose ratio and elongated amylopectin chains. In food products, high amylose content and long amylopectin chains contribute to a low glycaemic index (GI) after intake, playing a role in health benefits.
( Zhao et al., 2021 )
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Laboratorio de Agrobiotecnología (INTA), Argentina
Reduction of steroidal glycoalkaloids (SGAs). SGAs in most potato tissues are toxic to humans when the fresh weight is over 200mg/kg. High SGAs content also damage the quality of potato tubers.
( Zheng et al., 2021 )
SDN1
CRISPR/Cas
Qinghai University, China
Improved starch quality by reducing the levels of amylose, thus increasing the amylopectin content.
( Ali et al., 2023 )
SDN1
CRISPR/Cas
Agricultural Genetic Engineering Research Institute (AGERI)
Ain Shams University Faculty of Agriculture, Egypt
Amylose-free tubers.
( Abeuova et al., 2023 )
SDN1
CRISPR/Cas
National Center for Biotechnology (NCB)
L.N. Gumilyov Eurasian National University
Nazarbayev University, Kazakhstan
Seeds low in glucosinolate content and other plant parts high in glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock, they also play a role in plant defence.
( Mann et al., 2023 )
SDN1
CRISPR/Cas
National Institute of Plant Genome Research
University of Delhi South Campus, India
Reduced nicotine levels.
Nicotine is an addictive compound leading to severe diseases.
( Singh et al., 2023 )
SDN1
CRISPR/Cas
CSIR-National Botanical Research Institute
Academy of Scientific and Innovative Research (AcSIR)
Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), India
Increased potassium concentrations (K+). Potassium is crucial for improving the quality of tobacco.
( Gao et al., 2024 )
SDN1
CRISPR/Cas
Yunnan Academy of Tobacco Agricultural Sciences/National Tobacco Genetic Engineering
Research Center
Chinese Academy of Agricultural Sciences, China
Reduced nicotine levels. Nicotine is the addictive component in tobacco.
( Jeong et al., 2024 )
SDN1
CRISPR/Cas
Nulla Bio Inc.
Gyeongsang National University
Gyeongsang National University 501 Jinju-daero, South Korea
Increased iron content in potato plants. Iron is an essential micronutrient.
( Chauhan et al., 2024 )
SDN1
CRISPR/Cas
Panjab University
Panjab University
National Institute of Plant Genome Research, India
University of Minnesota, USA

Traits related to increased plant yield and growth

Increased seed number per silique, which increases the mustard yield per plant.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Increases size of starch granules. Granule size is a key parameter for industrial processing. Larger granules may increase yield during processing and it has been shown in sweet potato that smaller starch granules degrade faster than large granules, so larger granule tubers may be beneficial for storage.
( Pfotenhauer et al., 2023 )
SDN1
CRISPR/Cas
University of Tennessee, USA
Increased plant height, longer roots, smaller root growth angle and increased tuber weight.
( Zhao et al., 2024 )
SDN1
CRISPR/Cas
Yunnan Agricultural University
Chinese Academy of Sciences
Xuanhan County Plant Quarantine Station
Yuguopu District Agricultural Comprehensive Service Center
Ning'
er County Plant Protection and Plant Quarantine Station, China
Significantly higher potassium accumulation. Potassium ions are essential nutrients for growth and development of tobacco.
( Gao et al., 2024 )
SDN1
CRISPR/Cas
Yunnan Academy of Tobacco Agricultural Sciences/National Tobacco Genetic Engineering Research Center
Chinese Academy of Agricultural Sciences, China

Traits related to industrial utilization

Cytoplasmic male sterility.
( Chang et al., 2022 )
SDN1
CRISPR/Cas
Northwest Institute of Plateau Biology Chinese Academy of Sciences, China
Establishment of maternal haploid induction. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Zhong et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Wageningen University and Research, The Netherlands
Bioethanol production: Improved saccharification efficiency without compromising biomass yield.
(Kannan et al., 2017)
SDN1
TALENs
University of Florida
Novozymes North America Inc, USA
Korea Institute of Science and Technology (KIST), South Korea
Accumulate low levels of alkaloids. Nicotine is the most abundant alkaloid produced in tobacco plants. Switching to cigarettes containing levels of nicotine below the level of sustaining an addiction response will smoke less and/or find it easier to quit. Possibly, the US Food and Drug Administration (FDA) may mandate such reductions in future cigarette products.
( Smith et al., 2022 )
SDN1
CRISPR/Cas
North Carolina State University, USA
Glycoproteins without plant-specific glycans. Plants or plant cells can be used to produce pharmacological glycoproteins, for example antibodies or vaccines. However these proteins carry N-glycans with plant-typical residues [β(1,2)-xylose and core α(1,3)-fucose]. This plant-specific glycans can greatly impact the immunogenicity, allergenicity, or activity of the protein.
( Mercx et al., 2017 )
SDN1
CRISPR/Cas
Université catholique de Louvain
Université de Liège, Belgium
Bio-fuel production: Reduced lignin content, improves cell wall composition for production of bio-ethanol.
(Jung et al., 2016)
SDN1
TALENs
Korea University, South Korea
University of Florida, USA
Nicotine-free tobacco.
( Schachtsiek et al., 2019 )
SDN1
CRISPR/Cas
TU Dortmund University, Germany
Generate self-compatible diploid potato lines for the application of efficient breeding methods.
( Enciso-Rodriguez et al., 2021 )
SDN1
CRISPR/Cas
Michigan State University, USA
Bio-fuel production: decreased lignin content improves cell wall composition for production of bio-ethanol.
(Laksana et al., 2024)
SDN1
CRISPR/Cas
Burapha University Sakaeo Campus
Kasetsart University, Thailand
Generate self-compatible diploid potato lines for the application of efficient breeding methods.
( Eggers et al., 2021 )
SDN3
CRISPR/Cas
Solynta
Wageningen University &
Research, The Netherlands

Traits related to herbicide tolerance

Imidizolinone
( Butler et al., 2016 )
SDN2
CRISPR/Cas
Michigan State University
University of Minnesota, USA
Imidizolinone
( Butler et al., 2016 )
SDN2
TALENs
Michigan State University
University of Minnesota, USA
Chlorsulfuron
( Veillet et al., 2019 )

BE
Université Rennes 1
INRA PACA
Université Paris-Saclay, France

Traits related to product color/flavour

Albino phenotype
( Bánfalvi et al., 2020 )
SDN1
CRISPR/Cas
NARIC Agricultural Biotechnology Institute, Hungary
Altered ornamental quality: Increased sensitivity to low temperature, thus affecting leaf margin coloration.
(Zhou et al., 2023)
SDN1
CRISPR/Cas
Shenyang Agricultural University
Breeding and Cultivation of Liaoning Province
Dalian Minzu University
Key Laboratory of Biotechnology and Bioresources Utilization, China
Alleviated browning of freshly cut potatoes.
( Shi et al., 2023 )
SDN1
CRISPR/Cas
Shandong Agricultural University, China

Traits related to storage performance

Improved cold storage and processing traits: reduced levels of acrylamide, reduced sugars.
(Clasen et al., 2017)
SDN1
TALENs
Cellectis Plant Science, USA
Reduced enzymatic browning. The formation of dark-colored precipitates in fruits and vegetables causes undesirable changes in organoleptic properties and the loss of nutritional quality.
( Gonzalez et al., 2020 )
SDN1
CRISPR/Cas
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Laboratorio de Agrobiotecnología (INTA)
Universidad Nacional de Mar del Plata, Argentina
Swedish University of Agricultural Sciences, Sweden
Decreased cold-induced sweetening of the potato tubers.
Cold-storage causes undesired sweetening which reduces the quality and the commercial value of the tubers.
( Hassan et al., 2023 )
SDN1
CRISPR/Cas
Agricultural Genetic Engineering Research Institute - Agricultural Research Center
Ain Shams University, Egypt