Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 18 results

Traits related to biotic stress tolerance

Fungal resistance: enhanced resistance against powdery mildew disease.
(Xu et al., 2023)
SDN1
CRISPR/Cas
Kyungpook National University
Rural Development Administration
Sunchon National University, South Korea
Lingnan Normal University, China

Traits related to improved food/feed quality

Removing the major allergen to tackle food allergies.
( Assou et al., 2021 )
SDN1
CRISPR/Cas
Leibniz Universität Hannover
Technische Universität Braunschweig, Germany
Fine-tuning sugar content. Consumer preference varies along regional, cultural, and age lines, thus the solution is to create a continuum of phenotypic “taste” changes
( Xing et al., 2020 )

BE
Chinese Academy of Sciences
China Agricultural University, China
Reduced content of saturated fatty acids: low palmitic and high oleic acid. Great potential for improving peanut oil quality for human health.
(Tang et al., 2022)
SDN1
CRISPR/Cas
Qingdao Agricultural University, China
Improved fatty acid content: high oleic acid, decreased linoleic acid content. FA composition is important for human health and shelf life.
(Wen et al., 2018)
SDN1
TALENs
Guangdong Academy of Agricultural Sciences, China
Increased phosphorus and anthocyanin content.
( Zhang et al., 2023 )
SDN1
CRISPR/Cas
Shenyang Agricultural University
Ministry of Education, China
Increased phosphorus content and improved fruit quality.
( Zhang et al., 2023 )
SDN1
CRISPR/Cas
Shenyang Agricultural University
Ministry of Education, China
Seeds low in glucosinolate content and other plant parts high in glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock, they also play a role in plant defence.
( Mann et al., 2023 )
SDN1
CRISPR/Cas
National Institute of Plant Genome Research
University of Delhi South Campus, India
Reduced levels of very long chain saturated fatty acids in kernels, which are associated with revalance of atherosclerosis and cardiovascular disease.
( Huai et al., 2024 )
SDN1
CRISPR/Cas
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, China
International Crops Research Institute of the Semi-Arid Tropics (ICRISAT), India
Murdoch University, Australia

Traits related to increased plant yield and growth

Faster seedling growth.
( Zhou et al., 2018 )
SDN1
CRISPR/Cas
University of Maryland, USA
Increased seed number per silique, which increases the mustard yield per plant.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China

Traits related to industrial utilization

Smaller petunia plants with high flower abundance.
( Abdulla et al., 2024 )
SDN1
CRISPR/Cas
Ondokuz Mayis University, Turkey
Agricultural Research Center (ARC), Egypt

Traits related to herbicide tolerance

Herbicide tolerance: glyphosate
(Sauer et al., 2016)
SDN1
CRISPR/Cas
Cibus, USA
Herbicide-resistance (ALS-targeting).
( Shi et al., 2023 )

BE
Henan Biological Breeding Center Co.
The Shennong Laboratory, China

Traits related to product color/flavour

Albino phenotype.
( Wilson et al., 2019 )
SDN1
CRISPR/Cas
NIAB EMR, UK
Flower color modification to a pale purplish pink flower color compared to the purple violet wild type.
( Yu et al., 2021 )
SDN1
CRISPR/Cas
Hanyang University
Chungnam National University, South Korea

Traits related to storage performance

Enhancement of flowering time. Petunia has become popular in the floriculture industry, however it is sensitive to ethylene, which causes flower senescence.
( Xu et al., 2021 )
SDN1
CRISPR/Cas
Kyungpook National University
Kangwon National University, South Korea
Enhanced oleic acid to linoleic acid ratio. This adjusted ratio can improve the shelf life of peanut oil.
( Rajyaguru et al., 2024 )
SDN1
CRISPR/Cas
Junagadh Agricultural University, India