Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 12 results

Traits related to biotic stress tolerance

Oomycete resistance: significantly reduced susceptibility to downy mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Zhang et al., 2021)
SDN1
CRISPR/Cas
The State University of New Jersey, USA
Enhanced resistance to downy mildew pathogen.
( Hasley et al., 2021 )
SDN1
CRISPR/Cas
University of Hawaii at Manoa, USA
Oomycete resistance: resistance against downly mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Laura et al., 2023)
SDN1
CRISPR/Cas
Research Centre for Vegetable and Ornamental Crops
Institute of Agricultural Biology and Biotechnology
Institute for Sustainable Plant Protection
Research Centre for Olive Fruit and Citrus Crops
University of Pisa
Center for Agricultural Experimentation and Assistance
Institute of Biosciences and Bioresources, Italy

Traits related to improved food/feed quality

Fine-tuning sugar content. Consumer preference varies along regional, cultural, and age lines, thus the solution is to create a continuum of phenotypic “taste” changes
( Xing et al., 2020 )

BE
Chinese Academy of Sciences
China Agricultural University, China
Glucoraphanin(GR)-enriched broccoli. Broccoli contains important nutritional components and beneficial phytochemicals. GR, a major glucosinolate (GSL), protects the body against several chronic diseases.
( Kim et al., 2022 )
SDN1
CRISPR/Cas
Sejong University
Jeonbuk National University
Korea Research Institute of Bioscience and Biotechnology
Asia Seed Company Limited, South Korea
Increased phosphorus and anthocyanin content.
( Zhang et al., 2023 )
SDN1
CRISPR/Cas
Shenyang Agricultural University
Ministry of Education, China
Glossy green phenotype and reduced cuticular wax load.
( Liu et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Hunan Agricultural University
Tianjin Kernel Vegetable Research Institute, China
Increased phosphorus content and improved fruit quality.
( Zhang et al., 2023 )
SDN1
CRISPR/Cas
Shenyang Agricultural University
Ministry of Education, China

Traits related to increased plant yield and growth

Faster seedling growth.
( Zhou et al., 2018 )
SDN1
CRISPR/Cas
University of Maryland, USA

Traits related to product color/flavour

Albino phenotype.
( Wilson et al., 2019 )
SDN1
CRISPR/Cas
NIAB EMR, UK
Colour shift. The poinsettia belongs to most economically important potted ornamental plants. Customers are willing to pay higher prices for unusual varieties.
( Nitarska et al., 2021 )
SDN1
CRISPR/Cas
Technische Universität Wien, Austria
Klemm+Sohn GmbH &
Co
Leibniz Universität Hannover, Germany
Albino phenotype.
( Syombua et al., 2021 )
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA)
University of Nairobi, Kenya
University of Missouri
Iowa State University
Donald Danforth Plant Science Center, USA