Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 21 results

Traits related to biotic stress tolerance

Fungal resistance: Reduced pathogenicity to the oomycete Phytophthora palmivora, a destructive pathogen that infects all parts of papaya plants. Increased papain sensitvity of in-vitro growth. Papaya fruits contain papain, a cysteine protease that mediates plant defense against pathogens and insects.
(Gumtow et al., 2018)
SDN1
CRISPR/Cas
University of Hawaii at Manoa, USA
Mutants were compromised in infectivity of Phytophthora palmivora, a destructive oomycete plant pathogen with a wide host range
( Pettongkhao et al., 2022 )
SDN1
CRISPR/Cas
Prince of Songkla University, Thailand
University of Hawaii at Manoa
East-West Center, USA
Sainsbury Laboratory Cambridge University (SLCU), UK
Rapid detection system for Paracoccus marginatus, an insect that can cause huge crop losses.
( Chen et al., 2024 )
SDN1
CRISPR/Cas
Fujian Academy of Agricultural Sciences, China
UMR ISA, France

Traits related to abiotic stress tolerance

Removal of harmful pericarp character of weedy rice while increasing drought tolerance. Weedy rice has the potential of domestication into direct-seeding rice with strong drought tolerance.
( Kong et al., 2023 )
SDN1
CRISPR/Cas
Nanjing Agricultural University, China

Traits related to improved food/feed quality

Glucoraphanin(GR)-enriched broccoli. Broccoli contains important nutritional components and beneficial phytochemicals. GR, a major glucosinolate (GSL), protects the body against several chronic diseases.
( Kim et al., 2022 )
SDN1
CRISPR/Cas
Sejong University
Jeonbuk National University
Korea Research Institute of Bioscience and Biotechnology
Asia Seed Company Limited, South Korea
Enhanced oil composition. Increased oleic acid content and significant decreases in the less desirable polyunsaturated fatty acids, linoleic acid (i.e. a decrease from ~16% to <4%) and linolenic acid (a decrease from ~35% to <10%).
( Jiang et al., 2016 )
SDN1
CRISPR/Cas
University of Nebraska
University of California, USA
Increased levels of oleic acid and alpha-linolenic acid. Camelina is a low-input oilseed crop. It is necessary to ameloriate fatty acid composition in oils to meet different application requirements.
( Ozseyhan et al., 2018 )
SDN1
CRISPR/Cas
Montana State University, USA
Increased levels of oleic acid, decreased levels of fatty acids.
( Morineau et al., 2016 )
SDN1
CRISPR/Cas
Université Paris-Saclay, France
Lower oil content and altered fatty acid composition. Most commercially produced oil seeds synthesize only a relatively small range of fatty acids, offering limited functionality.
( Aznar-Moreno et al., 2017 )
SDN1
CRISPR/Cas
Kansas State University, USA
Promoted phenolic acid biosynthesis. Salvia is tradional Chinese medicine with great medical value to treat cardio- and cerebrovascular diseases. Phenolic acids make up a big part of the bioactive compounds.
( Shi et al., 2021 )
SDN1
CRISPR/Cas
East China University of Science and Technology
Zhejiang Chinese Medical University, China
University of Hawaii at Manoa, USA
Glossy green phenotype and reduced cuticular wax load.
( Liu et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Hunan Agricultural University
Tianjin Kernel Vegetable Research Institute, China
Reduced glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock.
( Hölzl et al., 2022 )
SDN1
CRISPR/Cas
University of Bonn
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Germany

Traits related to increased plant yield and growth

Bushy phenotype and increased tiller production.
( Liu et al., 2017 )
SDN1
CRISPR/Cas
Iowa State University, USA
Improve biomass yield and salinity tolerance.
( Guan et al., 2020 )
SDN1
CRISPR/Cas
China Agricultural University
Shandong institute of agricultural sustainable development
Beijing Sure Academy of Biosciences, China
Oklahoma State University, USA
Early flowering. Certain mutants also showed following phenotypes: determinate flowering, shorter stature and/or basal branching.
(Bellec et al., 2022)
SDN1
CRISPR/Cas
Université Paris-Saclay, France
Late flowering phenotype.
( Liu et al., 2024 )
SDN1
CRISPR/Cas
China Agricultural University, China

Traits related to industrial utilization

Bio-fuel production: Reduced lignin content and improved sugar release.
(Park et al., 2017)
SDN1
CRISPR/Cas
Noble Research Institute, USA
Reduced lignin content and S (syringyl lignin)/G (guaiacyl lignin) (S/G) ratio alteration to reduce cell wall recalcitrance and improve bioethanol production. Lignin is a major component of secondary cell walls and contributes to the recalcitrance problem during fermentation.
( Park et al., 2021 )
SDN1
CRISPR/Cas
The Samuel Roberts Noble Foundation
BioEnergy Science Center
University of Tennessee, USA
Increased monounsaturated fatty acid contents (MUFAs). Due to their higher thermal-oxidative stability and viscosity relative to other common fatty acids, MUFAs are preferred for industrial uses, for example as biolubricants and biodiesel fuels.
( Lee et al., 2021 )
SDN1
CRISPR/Cas
National Institute of Agricultural Sciences
Korea Advanced Institute of Science and Technology
Chonnam National University
Plant Engineering Research Institute, South Korea
Enhanced oil accumulation in the seed.
( Cai et al., 2024 )
SDN1
CRISPR/Cas
Brookhaven National Laboratory
Stony Brook University
Montana State University, USA

Traits related to product color/flavour

Albino phenotype.
( Brewer et al., 2022 )
SDN1
CRISPR/Cas
University of Florida, USA