Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 12 results

Traits related to biotic stress tolerance

Highly significant reduction in susceptibility to fire blight, caused by the bacterium Erwinia amylovora. Apple is one of the most cultivated fruit crops throughout the temperate regions of the world.
( Pompili et al., 2020 )
SDN1
CRISPR/Cas
Università degli Studi di Udine
Fondazione Edmund Mach, Italy
Bacterial resistance: Increased resistance to Erwinia amylovora, causing fire blight disease that threatens the apple and a wide range of ornamental and commercial Rosaceae host plants.
(Malnoy et al., 2016)
SDN1
CRISPR/Cas
Fondazione Edmund Mach, Italy
ToolGen Inc.
Institute for Basic Science
Seoul National University, South Korea

Traits related to abiotic stress tolerance

Altered cuticle properties to enhance drought tolerance.
( Negin et al., 2021 )
SDN1
CRISPR/Cas
Weizmann Institute of Science, Israel
Removal of harmful pericarp character of weedy rice while increasing drought tolerance. Weedy rice has the potential of domestication into direct-seeding rice with strong drought tolerance.
( Kong et al., 2023 )
SDN1
CRISPR/Cas
Nanjing Agricultural University, China
Fruits insensitive to the effectss of high temperature stress and with reduced browning phenotype caused by high temperatures.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Northwest A &
F University
College of Horticultural Science and Engineering, China

Traits related to increased plant yield and growth

Various phenotypic changes were observed of which traits such as plant dwarfing, color, shape, and weight, early flowering, a high number of flowers and early fruit set and maturation, fewer seeds, and reduced and delayed browning of fruits are agronomically important.
( Kodackattumannil et al., 2023 )
SDN1
CRISPR/Cas
United Arab Emirates University, United Arab Emirates

Traits related to industrial utilization

Bioethanol production: Improved saccharification efficiency without compromising biomass yield.
(Kannan et al., 2017)
SDN1
TALENs
University of Florida
Novozymes North America Inc, USA
Korea Institute of Science and Technology (KIST), South Korea
Bio-fuel production: Reduced lignin content, improves cell wall composition for production of bio-ethanol.
(Jung et al., 2016)
SDN1
TALENs
Korea University, South Korea
University of Florida, USA
Bio-fuel production: decreased lignin content improves cell wall composition for production of bio-ethanol.
(Laksana et al., 2024)
SDN1
CRISPR/Cas
Burapha University Sakaeo Campus
Kasetsart University, Thailand

Traits related to product color/flavour

Albino phenotype and early flowering.
( Charrier et al., 2019 )
SDN1
CRISPR/Cas
Université d'
Angers, France
Albino phenotype.
( Phad et al., 2023 )
SDN1
CRISPR/Cas
Plant Biotechnology Research Center, India

Traits related to storage performance

Reduced fruit flesh browning. The browning of eggplant berry flesh after cutting has a negative impact on fruit quality for both industrial transformation and fresh consumption.
( Maioli et al., 2020 )
SDN1
CRISPR/Cas
University of Torino, Italy
Instituto de Biologica Molecular y Celular de Plantas (IBMCP)
Universitat Politècnica de València, Spain