Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Sdn Type

Displaying 13 results

Traits related to biotic stress tolerance

Highly significant reduction in susceptibility to fire blight, caused by the bacterium Erwinia amylovora. Apple is one of the most cultivated fruit crops throughout the temperate regions of the world.
( Pompili et al., 2020 )
SDN1
CRISPR/Cas
Università degli Studi di Udine
Fondazione Edmund Mach, Italy
Bacterial resistance: Increased resistance to Erwinia amylovora, causing fire blight disease that threatens the apple and a wide range of ornamental and commercial Rosaceae host plants.
(Malnoy et al., 2016)
SDN1
CRISPR/Cas
Fondazione Edmund Mach, Italy
ToolGen Inc.
Institute for Basic Science
Seoul National University, South Korea
Increased resistance to drought stress by enhancing antioxidant capacity and defence system.
( Gao et al., 2022 )
SDN1
CRISPR/Cas
Henan Agricultural University
China Tobacco Sichuan Industrial Co., China
Viral resistance: enhanced Potato virus Y (PVY) resistance. PVY infection can result in up to 70% yield loss globally.
(Le et al., 2022)
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology, Vietnam
University of Edinburgh, UK
Enhanced resistance to powdery mildew.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences Institute of Tobacco Research, China
Viral resistance: highly resistant to viral infection with beet severe curly top virus (BSCTV), a geminivirus that can cause serious damage to many crop plants.
(Ji et al., 2015)
SDN1
CRISPR/Cas
University of Chinese Academy of Sciences, China
Viral resistance: Attenuated infection symptoms and reduced viral RNA accumulation, specific for the cucumber mosaic virus (CMV) or tobacco mosaic virus (TMV).
(Zhang et al., 2018)
SDN1
CRISPR/Cas
South China Agricultural University, China
University of Missouri, USA
Viral resistance: resistance to potato virus Y (PVY), one of the most economically and scientifically important plant viruses, causing damaging diseases of cultivated tobacco around the world.
(Ruyi et al., 2021)
SDN1
CRISPR/Cas
Mudanjiang Teachers College
Jilin Normal University
Mudanjiang Tobacco Research Institute, China
Viral resistance: to Cotton Leaf Curl Kokhran Virus, causing Cotton leaf curl disease (CLCuD), a very devastating and prevalent disease. CLCuD causes huge losses to the textile and other industries.
(Hamza et al., 2021)
SDN1
CRISPR/Cas
National Institute for Biotechnology and Genetic Engineering, Pakistan
Viral resistance: increased resistance against Tobacco Mosaic Virus (TMV).
(Jogam et al., 2023)
SDN1
CRISPR/Cas
Kakatiya University
Center of Innovative and Applied Bioprocessing (DBT-CIAB), India
University of Minnesota
East Carolina University, USA
Fungal resistance: enhanced resistance to Golovinomyces cichoracearum, which causes powdery mildew.
(Wang et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Linyi Tobacco Company
Tobacco Research Institute of Hubei Province
China Tobacco Hunan Industrial Co., China
Detection assay for brassica yellows virus (BrYV) detection. BrYV is an economically important virus threatening cruciferous species.
( Xu et al., 2024 )
SDN1
CRISPR/Cas
Guizhou University
Guizhou Academy of Tobacco Sciences
Guizhou Academy of Agricultural Sciences, China
Viral resistance: improved resistance against a tobamovirus, which could threaten tomato, tobacco, potato and squash plants.
(Miyoshi et al., 2024)
SDN1
CRISPR/Cas
Ehime University
Ehime Research Institute of Agriculture, Japan