Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the current and future applications of genome editing in crops, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crops.

The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about genome editing applications in crops. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.

Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.

Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop developed for market-oriented agricultural production as a result of a genome editing.

This database will be regularly updated. Please contact us via the following webpage (https://www.eu-sage.eu/contact) in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing.

This work has been supported by Task Force Planet Re-Imagine Europa (https://reimagine-europa.eu/area/planet)

Displaying 4 results

Traits related to abiotic stress tolerance

Higher tolerance to salt and osmotic stress through reduced stomatal conductance coupled with increased leaf relative water content and Abscisic acid (ABA) content under normal and stressful conditions.
( Bouzroud et al., 2020 )
SDN1
CRISPR/Cas
Université Mohammed V de Rabat, Morocco
Université de Toulouse, France
Universidade Federal de Viçosa, Brazil

Traits related to product color/flavour

Albino phenotype
( Bánfalvi et al., 2020 )
SDN1
CRISPR/Cas
NARIC Agricultural Biotechnology Institute, Hungary

Traits related to biotic stress tolerance

Viral resistance: Highly efficient resistance against wheat dwarf virus (WDV), an economically important virus. WDV infect both wheat and barley causing severe yield losses. The natural resistance resources are limited.
(Kis et al., 2019)
SDN1
CRISPR/Cas
University of Pannonia
Hungarian Academy of Sciences
Eötvös Loránd University University
Szent István University, Hungary
Viral resistance: reduced viral accumulation and amelioration of virus-induced symptoms by Potato Virus Y.
(Lucioli et al., 2022)
SDN1
CRISPR/Cas
ENEA
Council for Agricultural Research and Economics (CREA), Italy
National Agricultural Research and Innovation Centre, Hungary