Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the current and future applications of genome editing in crops, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crops.

The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about genome editing applications in crops. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.

Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.

Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop developed for market-oriented agricultural production as a result of a genome editing.

This database will be regularly updated. Please contact us via the following webpage (https://www.eu-sage.eu/contact) in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing.

This work has been supported by Task Force Planet Re-Imagine Europa (https://reimagine-europa.eu/area/planet)

Displaying 4 results

Traits related to industrial utilization

Confer male and female sterility to prevent the risk of trasgene flow from transgenic plants to their wild relatives.
( Shinoyama et al., 2020 )
SDN1
TALENs
Fukui Agricultural Experiment Station
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization (NARO)
Japan Science and Technology Agency (JST)
Yokohama City University, Japan
Altai State University, Russia

Traits related to biotic stress tolerance

Viral resistance: increased resistance to infection with the potato virus Y (PVY) and tolerance to salt and osmotic stress. PVY is one of the most economically important potato pathogens
(Makhotenko et al., 2019)
SDN1
CRISPR/Cas
Russia Moscow State University, Russia
Doka Gene Technologies Ltd, USA

Traits related to herbicide tolerance

Bispyribac sodium
( Kuang et al., 2020 )

BE
Chinese Academy of Agricultural Sciences
China Agricultural University
Zhejiang University, China
Norwegian Institute of Bioeconomy Research, Norway
Dinitroanaline
( Liu et al., 2021 )

BE
Chinese Academy of Agricultural Sciences
China Agricultural University
Zhejiang University
Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, China
Norwegian Institute of Bioeconomy Research, Norway