Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the current and future applications of genome editing in crops, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crops.

The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about genome editing applications in crops. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.

Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.

Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop developed for market-oriented agricultural production as a result of a genome editing.

This database will be regularly updated. Please contact us via the following webpage ( in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing.

This work has been supported by Task Force Planet Re-Imagine Europa (

Displaying 5 results

Traits related to product color/flavour

Color modification due to reduced anthocyanin accumulation.
( Klimek-Chodacka et al., 2018 )
University of Agriculture in Krakow, Poland
East Carolina University
University of Maryland, USA

Traits related to industrial utilization

Conversion of hulled into naked barley.
( Gasparis et al., 2018 )
National Research Institute
Warsaw University of Life Sciences (SGGW), Poland
Manipulation of the biosynthesis of bioactive compound alkaloids. Poppy produces many benzylisoquinoline alkaloids (BIAs) used in biomedicines.
( Alagoz et al., 2016 )
Cankiri Karatekin University
Dokuz Eylul University, Turkey
Male sterility: mutants did not produce pollen and induced a parthenocarpic fruit set.
(Gökdemir et al., 2022)
Ondokuz Mayıs University
Burdur Mehmet Akif Ersoy University, Turkey

Traits related to increased plant yield and growth

Altering leaf inclination angle which has the potential to elevate yield in high-density plantings.
( Brant et al., 2022 )
University of Florida
DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
Kastamonu University, Turkey