Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 16 results

Traits related to biotic stress tolerance

Fungal resistance: Resistance against the blast fungus Mangaporthe oryzae.
(Bundó et al., 2024)
SDN1
CRISPR/Cas
Campus Universitat Autònoma de Barcelona (UAB)
Consejo Superior de Investigaciones Científcas (CSIC), Spain
Academia Sinica No 128, Taiwan
Viral resistance: improved resistance against tomato yellow leaf curl virus (TYLCV). TYLCV causes significant economic losses in tomato production worldwide.
(Faal et al., 2020)
SDN1
CRISPR/Cas
Ferdowsi University of Mashhad, Iran
Viral resistance: increased resistance to infection with the potato virus Y (PVY) and tolerance to salt and osmotic stress. PVY is one of the most economically important potato pathogens
(Makhotenko et al., 2019)
SDN1
CRISPR/Cas
Russia Moscow State University, Russia
Doka Gene Technologies Ltd, USA

Traits related to abiotic stress tolerance

Increased salt-tolerance.
( Antonova et al., 2024 )
SDN1
CRISPR/Cas
Institute of Plant and Animal Ecology (IPAE)
N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Institute of Cytology and Genetics (ICG), Russia
Improved salinity tolerance.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
National Taiwan University, Taiwan
University of North Carolina, USA

Traits related to improved food/feed quality

Important metabolic changes affecting tomato fruit quality. Reduced contents of the anti-nutrient oxalic acid.
( Gago et al., 2017 )
SDN1
ZFN
University of Algarve, Portugal
Centre for Research and Technology Hellas
Technological Educational Institution of Crete, Greece
Improved kafirin digestibility, which increases the grain nutritional value.
( Elkonin et al., 2023 )
SDN1
CRISPR/Cas
Federal Centre of Agriculture Research of South-East Region
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Russia
Glossy sheat phenotype.
( Gerasimova et al., 2023 )
SDN1
CRISPR/Cas
Siberian Branch of the Russian Academy of Sciences
Vavilov Institute of Plant Genetic Resources (VIR)
Siberian Branch of the Russian Academy of Sciences, Russia

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
Production of high amylose and resistant starch rice. Starch accounts for 80 to 90% of the total mass of rice seeds and is low in resistant starch (RS), which is beneficial in preventing various diseases. Starch with high amylose content (AC) and RS have a lower GI value. Foods with low GI value have beneficial effects on glycemic control.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
National Chiayi University
Taiwan Agricultural Research Institute Chiayi Agricultural Experiment Branch, Taiwan
Improved digestibility of kafirins, which increases the grain nutritional value.
( Elkonin et al., 2023 )
SDN1
CRISPR/Cas
Federal Centre of Agriculture Research of South-East Region
Institute of Biochemistry and Genetics, Russia

Traits related to increased plant yield and growth

Transformation of a climbing woody perennial, developing axillary inflorescences after many years of juvenility, into a compact plant with rapid terminal flower and fruit development.
( Varkonyi-Gasic et al., 2022 )
SDN1
CRISPR/Cas
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research), University of Auckland, New Zealand

Traits related to industrial utilization

Conversion of hulled into naked barley.
( Gasparis et al., 2018 )
SDN1
CRISPR/Cas
National Research Institute
Warsaw University of Life Sciences (SGGW), Poland
Improved saccharification efficiency by an altered cell wall architecture.
( Nayeri et al., 2022 )
SDN1
CRISPR/Cas
Shahid Beheshti University
University of Tabriz, Iran
Confer male and female sterility to prevent the risk of trasgene flow from transgenic plants to their wild relatives.
( Shinoyama et al., 2020 )
SDN1
TALENs
Fukui Agricultural Experiment Station
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization (NARO)
Japan Science and Technology Agency (JST)
Yokohama City University, Japan
Altai State University, Russia

Traits related to product color/flavour

Reduced citrate content. Citrate is a common primary metabolite which often characterizes fruit flavour.
( Fu et al., 2023 )
SDN1
CRISPR/Cas
Zhejiang University, China
University of Florida, USA
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research) Mt Albert
University of Auckland, New Zealand
Color modification due to reduced anthocyanin accumulation.
( Klimek-Chodacka et al., 2018 )
SDN1
CRISPR/Cas
University of Agriculture in Krakow, Poland
East Carolina University
University of Maryland, USA