Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Sdn Type

Displaying 29 results

Traits related to biotic stress tolerance

Fungal resistance: Resistance against the blast fungus Mangaporthe oryzae.
(Bundó et al., 2024)
SDN1
CRISPR/Cas
Campus Universitat Autònoma de Barcelona (UAB)
Consejo Superior de Investigaciones Científcas (CSIC), Spain
Academia Sinica No 128, Taiwan
Fungal resistance: increased resistance to Phytophthora infestans, causing late blight disease, the most serious disease of potato crops worldwide. The pathogen can infect the leaves, stems and tubers of potato plants. An unprotected field can be completely destroyed in several days.
(Kieu et al., 2021)
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
University of Copenhagen, Denmark
Broad-spectrum disease resistance without yield loss.
( Sha et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Chengdu Normal University
Jiangxi Academy of Agricultural Sciences
Anhui Agricultural University
BGI-Shenzhen
Northwest A&
F University
Shandong Academy of Agricultural Sciences, China
Université de Bordeaux, France
University of California
The Joint BioEnergy Institute, USA
University of Adelaide, Australia

Traits related to abiotic stress tolerance

Drought and salt tolerance.
( Curtin et al., 2018 )
SDN1
CRISPR/Cas
University of Minnesota, USA
The University of Newcastle, Australia
Improved salinity tolerance.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
National Taiwan University, Taiwan
University of North Carolina, USA

Traits related to improved food/feed quality

Reduced levels of very long chain saturated fatty acids in kernels, which are associated with revalance of atherosclerosis and cardiovascular disease.
( Huai et al., 2024 )
SDN1
CRISPR/Cas
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, China
International Crops Research Institute of the Semi-Arid Tropics (ICRISAT), India
Murdoch University, Australia
Changing grain composition: decrease in the prolamines, an increase in the glutenins, increased starch content, amylose content, and β-glucan content. The protein matrix surrounding the starch granules was increased.
(Yang et al., 2020)
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
Norwich Research Park, UK
CSIRO Agriculture and Food, Australia
Highly specific detection of Ochratoxin A (OTA) in cereal samples. OTA is classified as a Class 2B carcinogens. The method can be flexibly customized to detect a wide range of small molecular targets and holds great promise as a versatile sensing kit with applications in various fields requiring sensitive and specific detection of diverse analytes.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
Ningbo University
Hainan University
Ningbo Clinical Pathology Diagnosis Center, China
University of New South Wales, Australia
Specific differences in grain morphology, composition and (1,3;1,4)-β-glucan content. Barley rich in (1,3;1,4)-β-glucan, a source of fermentable dietary fibre, is useful to protect against various human health conditions. However, low grain (1,3;1,4)-β-glucan content is preferred for brewing and distilling.
( Garcia-Gimenez et al., 2020 )
SDN1
CRISPR/Cas
The James Hutton Institute
University of Dundee, UK
University of Adelaide
La Trobe University, Australia
Fine-tuning the amylose content, one of the major contributors to the eating and cooking quality.
( Xu et al., 2021 )

BE
Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Chinese Academy of Sciences, China
CSIRO Agriculture and Food, Australia
Low glutelin content in the rice germplasm: patients with chronic kidney disease (CKD) and phenylketonuria (PKU) need to eat rice with low glutelin content.
(Chen et al., 2022)
SDN1
CRISPR/Cas
Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Henan Agricultural University
Jiangsu Academy of Agricultural Sciences, China
CSIRO Agriculture and Food, Australia
Production of high amylose and resistant starch rice. Starch accounts for 80 to 90% of the total mass of rice seeds and is low in resistant starch (RS), which is beneficial in preventing various diseases. Starch with high amylose content (AC) and RS have a lower GI value. Foods with low GI value have beneficial effects on glycemic control.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
National Chiayi University
Taiwan Agricultural Research Institute Chiayi Agricultural Experiment Branch, Taiwan
Reduced amount of saturated fatty acids (FA) in soybean seeds for nutrititional improvement. FA are linked to cardiovascular diseases.
( Ma et al., 2021 )
SDN1
CRISPR/Cas
Zhejiang University, China
La Trobe University, Australia
Reduced browning and acrylamide. Acrylamide is a contaminant which forms during the baking, toasting and high-temperature processing of foods and is regarded as a potential carcinogen and neurotoxin.
( Nguyen Phuoc Ly et al., 2023 )
SDN1
CRISPR/Cas
Murdoch University, Australia
Reduced flavonoids and improved fatty acid composition with higher linoleic acid and linolenic acid, valuable for rapeseed germplasm and breeding. The genetic improvement has great significance in the economic value of rapeseeds.
( Xie et al., 2020 )
SDN1
CRISPR/Cas
Yangzhou University
The Ministry of Education of China, China
University of Western Australia, Australia

Traits related to increased plant yield and growth

Increase in plant height, tiller number, grain protein content and yield. 1.5- to 2.8-fold increase in total chlorophyll content in the flag leaf at the grain filling stage. Delayed senescence by 10–14 days. High nitrogen content in shoots under low nitrogen conditions.
( Karunarathne et al., 2022 )
SDN1
CRISPR/Cas
Murdoch University
Department of Primary Industries and Regional Development, Australia
Positive regulation for grain dormancy. Lack of grain dormancy in cereal crops causes losses in yield and quality because of preharvest sprouting.
( Lawrenson et al., 2015 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Murdoch University, Australia
Semi-dwarf phenotype to improve lodging resistance and increased seed dormancy. Increased seed dormancy can be beneficial for use in the malting industry.
( Cheng et al., 2023 )
SDN1
CRISPR/Cas
University of Tasmania
Murdoch University
Department of Primary Industries and Regional Development, Australia
Chinese Academy of Agricultural Sciences, China

Traits related to industrial utilization

Conferring water logging tolerance for further expansion of the cultivation area.
( Abdullah et al., 2021 )
SDN1
CRISPR/Cas
Faculty of Agriculture
University of Nottingham
Universiti Putra Malaysia, Malaysia
Manipulation of self-incompatibility.
( Zhang et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Aarhus University
DLF Seeds A/S, Denmark
Conversion of hulled into naked barley.
( Gasparis et al., 2018 )
SDN1
CRISPR/Cas
National Research Institute
Warsaw University of Life Sciences (SGGW), Poland
Generation of male-sterile hexaploid wheat lines for use in hybrid seed production. The development and adoption of hybrid seed technology have led to dramatic increases in agricultural productivity.
( Okada et al., 2019 )
SDN1
CRISPR/Cas
The University of Adelaide, Australia
Huaiyin Normal University, China

Traits related to herbicide tolerance

Herbicide glyphosate tolerance.
( Arndell et al., 2019 )
SDN1
CRISPR/Cas
CSIRO
New South Wales Department of Primary Industries
The University of Adelaide, Australia
Imazethapyr, imazapic
( Wang et al., 2020 )
SDN1
CRISPR/Cas
Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Jiangsu University, China
CSIRO Agriculture and Food, Australia
Herbicide tolerance (ALS-targeting)
( Wang et al., 2020 )
SDN1
CRISPR/Cas
Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Jiangsu Academy of Agricultural Sciences
Jiangsu University, China
CSIRO Agriculture and Food, Australia

Traits related to product color/flavour

Color modification due to reduced anthocyanin accumulation.
( Klimek-Chodacka et al., 2018 )
SDN1
CRISPR/Cas
University of Agriculture in Krakow, Poland
East Carolina University
University of Maryland, USA
Albinism and dwarfing.
( Naim et al., 2018 )
SDN1
CRISPR/Cas
Queensland University of Technology, Australia
Albino phenotype.
( Yeap et al., 2021 )
SDN1
CRISPR/Cas
Sime Darby Plantation Technology Centre Sdn. Bhd.
Sime Darby Plantation Research Sdn. Bhd., Malaysia

Traits related to storage performance

Improved shelf-life by targeting the genes modulating pectin degradation in ripening tomato.
( Wang et al., 2019 )
SDN1
CRISPR/Cas
University of London
University of Leicester
University of Nottingham
University of Leeds, UK
International Islamic University Malaysia, Malaysia
Shanxi Academy of Agricultural Sciences, China
University of California, USA