Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Displaying 28 results

Traits related to biotic stress tolerance

Viral resistance: increased resistance to infection with the potato virus Y (PVY) and tolerance to salt and osmotic stress. PVY is one of the most economically important potato pathogens
(Makhotenko et al., 2019)
SDN1
CRISPR/Cas
Russia Moscow State University, Russia
Doka Gene Technologies Ltd, USA
Rapid detection of toxigenic Fusarium verticillioides, a phytopathogenic fungus that causes Fusarium ear and stalk rot and poses a threat to maize yields. This accurate and portable detection equipment has great potential for detection of the pathogen, even in areas lacking proper lab equipment.
( Liang et al., 2023 )
SDN1
CRISPR/Cas
Institute of Food Science and Technology
North Minzu University
School of Food Science and Engineering, China
Gembloux Agro-Bio Tech, Belgium
Plant parasitic resitance: Broomrape resistant plants. Broomrape (Orobanche cumana Wallr) threatens the sunflower production in countries in Central and Eastern Europe as well as in Spain, Turkey, Israel, Iran, Kazakhstan, and China.
(Yildirim et al., 2023)
SDN1
CRISPR/Cas
Department of Molecular Bioloqy and Genetics Ondokuz Mayıs University
Sunflower Institute of Field and Vegetable Crops
Department of Biomedical Engineering Akdeniz University, Turkey
Viral resistance: Increased resistance against watermelon mosaic virus (WMV), papaya ringspot virus (PRSV), and zucchini yellow mosaic virus (ZYMV).
(Fidan et al., 2023)
SDN1
CRISPR/Cas
Akdeniz University
Research and Development Department AD ROSSEN Seeds, Turkey

Traits related to abiotic stress tolerance

Increased salt-tolerance.
( Antonova et al., 2024 )
SDN1
CRISPR/Cas
Institute of Plant and Animal Ecology (IPAE)
N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Institute of Cytology and Genetics (ICG), Russia
Drought tolerance.
( Njuguna et al., 2018 )
SDN1
CRISPR/Cas
Ghent University
Center for Plant Systems Biology, Belgium
Jomo Kenyatta University of Agriculture and Technology, Kenya

Traits related to improved food/feed quality

Improved digestibility of kafirins, which increases the grain nutritional value.
( Elkonin et al., 2023 )
SDN1
CRISPR/Cas
Federal Centre of Agriculture Research of South-East Region
Institute of Biochemistry and Genetics, Russia
Improved kafirin digestibility, which increases the grain nutritional value.
( Elkonin et al., 2023 )
SDN1
CRISPR/Cas
Federal Centre of Agriculture Research of South-East Region
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Russia
Increased amylose content. Cereals high in amylose content (AC) and resistant starch (RS) offer potential health benefits and reduce risks of diseases such as coronary heart disease, diabetes and certain colon and rectum cancers.
( Sun et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA
University of Liege, Belgium
Glossy sheat phenotype.
( Gerasimova et al., 2023 )
SDN1
CRISPR/Cas
Siberian Branch of the Russian Academy of Sciences
Vavilov Institute of Plant Genetic Resources (VIR)
Siberian Branch of the Russian Academy of Sciences, Russia

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
Enhanced fatty acid composition: high oleic acid content. High oleic sunflower is desirable because of health benefits and industrial use.
(Uslu et al., 2022)
SDN1
CRISPR/Cas
Marmara University
Gebze Technical University, Turkey
Amylose-free tubers.
( Abeuova et al., 2023 )
SDN1
CRISPR/Cas
National Center for Biotechnology (NCB)
L.N. Gumilyov Eurasian National University
Nazarbayev University, Kazakhstan

Traits related to increased plant yield and growth

Improves complex traits such as yield and drought tolerance.
( Lorenzo et al., 2022 )
SDN1
CRISPR/Cas
Center for Plant Systems Biology
Ghent University
Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Belgium
Production of enlarged, dome-shaped leaves. Enlarged fruits with increased pericarp thickness due to cell expansion.
( Swinnen et al., 2022 )
SDN1
CRISPR/Cas
Ghent University
Center for Plant Systems Biology, Vives, Belgium
Université de Bordeaux, France
Altering leaf inclination angle which has the potential to elevate yield in high-density plantings.
( Brant et al., 2022 )
SDN1
CRISPR/Cas
University of Florida
DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
Kastamonu University, Turkey

Traits related to industrial utilization

Glycoproteins without plant-specific glycans. Plants or plant cells can be used to produce pharmacological glycoproteins, for example antibodies or vaccines. However these proteins carry N-glycans with plant-typical residues [β(1,2)-xylose and core α(1,3)-fucose]. This plant-specific glycans can greatly impact the immunogenicity, allergenicity, or activity of the protein.
( Mercx et al., 2017 )
SDN1
CRISPR/Cas
Université catholique de Louvain
Université de Liège, Belgium
Manipulation of the biosynthesis of bioactive compound alkaloids. Poppy produces many benzylisoquinoline alkaloids (BIAs) used in biomedicines.
( Alagoz et al., 2016 )
SDN1
CRISPR/Cas
Cankiri Karatekin University
Dokuz Eylul University, Turkey
Jointless tomatoes. Pedicel abscission is an important agronomic factor that controls yield and post-harvest fruit quality. In tomato, floral stems that remain attached to harvested fruits during picking mechanically damage the fruits during transportation, decreasing the fruit quality for fresh-market tomatoes and the pulp quality for processing tomatoes.
( Roldan et al., 2017 )
SDN1
CRISPR/Cas
Institute of Plant Sciences Paris-Saclay (IPS2), France
University of Liège, Belgium
Smaller petunia plants with high flower abundance.
( Abdulla et al., 2024 )
SDN1
CRISPR/Cas
Ondokuz Mayis University, Turkey
Agricultural Research Center (ARC), Egypt
Generating male sterility lines (MLS) and enhanced tolerance against drought stress. Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Secgin et al., 2022 )
SDN1
CRISPR/Cas
Ondokuz Mayıs University
Burdur Mehmet Akif Ersoy University
Ondokuz Mayıs University, Turkey
Agricultural Research Center (ARC), Egypt
Tailoring poplar lignin without yield penalty. Reduced recalcitrance.
( De Meester et al., 2020 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology
VIB Metabolomics Core, Belgium
Doubled haploids with increased leaf size. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Impens et al., 2023 )
SDN1
CRISPR/Cas
Ghent University
VIB-UGent Center for Plant Systems Biology
Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
Male sterility: mutants did not produce pollen and induced a parthenocarpic fruit set.
(Gökdemir et al., 2022)
SDN1
CRISPR/Cas
Ondokuz Mayıs University
Burdur Mehmet Akif Ersoy University, Turkey
Reduced lignin content and increased sugar release upon saccharification.
( De Meester et al., 2021 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology, Belgium
35% reduction in lignin. Fourfold increase in cellulose-to-glucose conversion upon limited saccharification. Efficient saccharification is hindered by the presence of lignin in the secondary-thickened cell walls.
( de Vries et al., 2021 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology, Belgium
Confer male and female sterility to prevent the risk of trasgene flow from transgenic plants to their wild relatives.
( Shinoyama et al., 2020 )
SDN1
TALENs
Fukui Agricultural Experiment Station
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization (NARO)
Japan Science and Technology Agency (JST)
Yokohama City University, Japan
Altai State University, Russia

Traits related to herbicide tolerance

Glyphosate & hppd inhibitor herbicides, for example tembotrione
( D'Halluin et al., 2013 )
SDN2
CRISPR/Cas
Bayer CropScience N.V, Belgium

Traits related to product color/flavour

Colour shift. The poinsettia belongs to most economically important potted ornamental plants. Customers are willing to pay higher prices for unusual varieties.
( Nitarska et al., 2021 )
SDN1
CRISPR/Cas
Technische Universität Wien, Austria
Klemm+Sohn GmbH &
Co
Leibniz Universität Hannover, Germany