Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 23 results

Traits related to biotic stress tolerance

Fungal resistance: Enhanced resistance to powdery mildew, a fungal disease causing great losses in soybean yield and seed quality.
(Bui et al., 2023)
SDN1
CRISPR/Cas
Institute of Biotechnology
University of Science and Technology of Hanoi
Vietnam Academy of Science and Technology
Vietnam Academy of Agriculture Science, Vietnam
Washington University in St. Louis
University of Missouri, USA

Viral resistance: enhanced Potato virus Y (PVY) resistance. PVY infection can result in up to 70% yield loss globally.
(Le et al., 2022)
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology, Vietnam
University of Edinburgh, UK
Viral resistance: improved resistance to yellow leaf curl virus (TYLCV).
(Tashkandi et al., 2018)
SDN1
CRISPR/Cas
Princess Nourah bint Abdulrahman University
4700 King Abdullah University of Science and Technology, Saudi Arabia
Detection method for the geminiviruses, tomato yellow leaf curl virus and tomato leaf curl New Delhi virus, which can cause huge economic losses and pose a threat to sustainable agriculture.
( Mahas et al., 2021 )
SDN1
CRISPR/Cas
King Abdullah University of Science and Technology (KAUST), Saudi Arabia
Viral resistance: resistance to Tomato yellow leaf curl virus (TYLCV). Delayed or reduced accumulation of viral DNA and abolished or attenuated symptoms of infection.
(Ali et al., 2015)
SDN1
CRISPR/Cas
King Abdullah University of Science and Technology, Saudi Arabia

Traits related to abiotic stress tolerance

Tolerance to salt stress.
( Tran et al., 2021 )
SDN1
CRISPR/Cas
Gyeongsang National University, South Korea
College of Agriculture
Bac Lieu University, Vietnam
Improved salt stress resistance. Significant increase in the shoot weight, the total chlorophyll content, and the chlorophyll fluorescence under salt stress. Also high antioxidant activities coincided with less reactive oxygen species (ROS).
( Shah Alam et al., 2022 )
SDN1
CRISPR/Cas
Zhejiang University, China
Taif University, Saudi Arabia
Alexandria University, Egypt
Enhanced salt tolerance.
( Ly et al., 2024 )
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology
Agricultural Genetics Institute, Vietnam

Traits related to improved food/feed quality

Increased amylose content in the seeds, thus a lower Glycemic Index (GI) value. Low GI rice is preferred to avoid a sudden rise in glucose in the bloodstream. Starch with a high GI threatens healthy individuals to get diabetes type II and proves extremely harmful for existing diabetes type II patients.
( Jameel et al., 2022 )
SDN1
CRISPR/Cas
Jamia Millia Islamia
International Centre for Genetic Engineering and Biotechnology, India
King Saud University, Saudi Arabia
Increased sugar and amino acid content leading to improved fruit quality.
( Nguyen et al., 2023 )
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology
Food Industries Research Institute, Vietnam
University of Missouri, USA
Reduced content of anti-nutritional factors in soybean seeds, leading to improved digestibility.
( Figliano et al., 2023 )
SDN1
CRISPR/Cas
UEL - Universidade Estadual de Londrina, Portugal
Important metabolic changes affecting tomato fruit quality. Reduced contents of the anti-nutrient oxalic acid.
( Gago et al., 2017 )
SDN1
ZFN
University of Algarve, Portugal
Centre for Research and Technology Hellas
Technological Educational Institution of Crete, Greece
Reduced raffinose family oligosaccharide (RFO) levels in seeds. Human and other monogastric animals cannot digest major soluble carbohydrates, RFOs.
( Le et al., 2020 )
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology, Vietnam
University of Missouri, USA
Leibniz Institute of Plant Genetics and Crop Plant Research
Germany
High oleic, low linoleic and alpha-linolenic acid phenotype. High concentration of linoleic and alpha-linolenic acids causes oxidative instability.
( Do et al., 2019 )
SDN1
CRISPR/Cas
University of Missouri, USA
Vietnam Academy of Science and Technology, Vietnam

Traits related to increased plant yield and growth

Altered root architecture with increased tillers and total grain weight.
( Rahim et al., 2023 )
SDN1
CRISPR/Cas
Quaid-e-Azam University
National Agricultural Research Centre (NARC)
The University of Haripur, Pakistan
King Saud University, Saudi Arabia
Nile University
Ain Shams University, Egypt
Chonnam National University, South Korea
Reduced seed shattering. Seed shattering is one of the main constraints on grain production in African cultivated rice, which causes severe grain losses during harvest.
( Ning et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University, China
Africa Rice Center, Benin
Altered plant architecture to inrease yield: increased node number on the main stem and branch number.
(Bao et al., 2019)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Huazhong Agricultural University, China
Duy Tan University, Vietnam
RIKEN Center for Sustainable Resource Science, Japan
Increased grain yield and quality.
( Luo et al., 2024 )
SDN1
CRISPR/Cas
Guizhou University, China
King Saud University, Saudi Arabia
Plant architecture: high tillering and reduced height.
(Butt et al., 2018)
SDN1
CRISPR/Cas
King Abdullah University of Science and Technology, Saudi Arabia
Various phenotypic changes were observed of which traits such as plant dwarfing, color, shape, and weight, early flowering, a high number of flowers and early fruit set and maturation, fewer seeds, and reduced and delayed browning of fruits are agronomically important.
( Kodackattumannil et al., 2023 )
SDN1
CRISPR/Cas
United Arab Emirates University, United Arab Emirates

Traits related to herbicide tolerance

Herboxidiene
( Butt et al., 2019 )
SDN1
CRISPR/Cas
King Abdullah University of Science and Technology (KAUST), Saudi Arabia
Universite Paris-Saclay, France
Bispyribac sodium
( Butt et al., 2017 )
SDN2
CRISPR/Cas
King Abdullah University of Science and Technology, Saudi Arabia
Agricultural Research Center, Egypt
Rice University, USA
Bispyribac sodium
( Butt et al., 2020 )

PE
King Abdullah University of Science and Technology (KAUST), Saudi Arabia