Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 29 results

Traits related to biotic stress tolerance

Bacterial resistance: enhanced disease resistance to Clavibacter michiganensis subsp. michiganensis infection.
(García-Murillo et al., 2023)

CRISPR/Cas
Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Zafar et al., 2020)
SDN1
CRISPR/Cas
Constituent College of Pakistan Institute of Engineering and Applied Sciences
University of Information Technology
Engineering and Management Sciences
Constituent College of Pakistan Institute of Engineering and Applied Sciences, Pakistan
Viral resistance: increased resistance to chickpea chlorotic dwarf virus (CpCDV).
(Malik et al., 2023)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Washington State University, USA
Bacterial resistance: bacterial leaf-blight resistance, which is a destructive disease caused by Xanthomonas oryzae pv. oryzae. and threatens rice production in tropical and temperate regions.
(Kim et al., 2024)
SDN1
CRISPR/Cas
Chungbuk National University
Hankyong National University, Korea
Fungal resistance: Increased tolerance against Fusarium oxysporum f. sp. lycopersici, causing vascular wilt.
(Ijaz et al., 2022)
SDN1
CRISPR/Cas
University of Agriculture, Pakistan
Fungal and bacterial resistance: Increased resistance to late blight pathogen Phytophthora infestans, common scab, and the early blight pathogen Alternaria solani.
(Karlsson et al., 2024)
SDN1
CRISPR/Cas
University of Agricultural Sciences, Sweden
Viral resistance: enhanced resistance against chickpea chlorotic dwarf virus (CpCDV). The range of symptoms caused by CpCDV varies from mosaic pattern to streaks to leaf curling and can include browning of the collar region and stunting, foliar chlorosis and necrosis.
(Munir Malik et al., 2022)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Washington State University, USA
Fungal resistance: increased resistance to Phytophthora infestans, causing late blight disease, the most serious disease of potato crops worldwide. The pathogen can infect the leaves, stems and tubers of potato plants. An unprotected field can be completely destroyed in several days.
(Kieu et al., 2021)
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
University of Copenhagen, Denmark
Viral resistance: to Cotton Leaf Curl Kokhran Virus, causing Cotton leaf curl disease (CLCuD), a very devastating and prevalent disease. CLCuD causes huge losses to the textile and other industries.
(Hamza et al., 2021)
SDN1
CRISPR/Cas
National Institute for Biotechnology and Genetic Engineering, Pakistan
Broad-spectrum resistance against multiple Potato virus Y (PVY)-strains.
( Noureen et al., 2022 )
SDN1
CRISPR/Cas
Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS)
University Institute of Biochemistry and Biotechnology (UIBB), Pakistan
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Xu et al., 2021)
SDN1
TALENs
Shanghai Jiao Tong University, China
Crop Diseases Research Institute, Pakistan
Viral resistance: reduced cotton leaf curl viral (CLCuV) load with asymptomatic plants. <br /> CLCuV causes a very devastating and prevalent disease. It causes huge losses to textile and other industries.
(Shakoor et al., 2023)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Pacific Biosciences
CureVac Manufacturing GmbH, Germany

Traits related to abiotic stress tolerance

Improved cold tolerance.
( Park et al., 2024 )
SDN1
CRISPR/Cas
Rural Development Administration
Kyungpook National University
National Institute of Agricultural Sciences
Kyungpook National University
Jeonbuk National University, Korea
College of Marine and Bioengineering, China
Higher tolerance to salt and osmotic stress through reduced stomatal conductance coupled with increased leaf relative water content and Abscisic acid (ABA) content under normal and stressful conditions.
( Bouzroud et al., 2020 )
SDN1
CRISPR/Cas
Université Mohammed V de Rabat, Morocco
Université de Toulouse, France
Universidade Federal de Viçosa, Brazil
Increased root length, which can restore good performance under water stress.
( Gabay et al., 2023 )
SDN1
CRISPR/Cas
University of California
Howard Hughes Medical Institute, USA
University of Haifa, Israel
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Universidad Nacional de San Martín (UNSAM), Argentina
Fudan University
China Agricultural University, China
Karolinska Institutet, Sweden
Enhanced drought tolerance.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
International Maize and Wheat Improvement Center, Mexico

Traits related to improved food/feed quality

Reduce malnutrition by decreasing antinutrient phytic acid (PA) and increasing Iron and Zinc accumulation. PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Ibrahim et al., 2021 )
SDN1
CRISPR/Cas
Quaid-i-Azam University Islamabad
National Agricultural Research Centre, Pakistan
Starch with an increased amylose ratio and elongated amylopectin chains. In food products, high amylose content and long amylopectin chains contribute to a low glycaemic index (GI) after intake, playing a role in health benefits.
( Zhao et al., 2021 )
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Laboratorio de Agrobiotecnología (INTA), Argentina
Reduces phytic acid (anti-nutrient) and improves iron and zinc accumulation in wheat grains. Biofortification.
( Ibrahim et al., 2021 )
SDN1
CRISPR/Cas
Quaid-i-Azam University Islamabad
National Agricultural Research Centre, Pakistan
Improved starch quality. Starch has many food and technical applications and is often modified to certain specifications.
( Andersson et al., 2017 )
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
Improved cold storage and processing traits: lower levels of reduced sugars
(Yasmeen et al., 2022)
SDN1
CRISPR/Cas
University of the Punjab, Pakistan

Traits related to increased plant yield and growth

Increase in 1000-grain weight, grain area, grain width, grain length, plant height, and spikelets per spike.
( Errum et al., 2023 )
SDN1
CRISPR/Cas
National Agricultural Research Centre (NARC)
PARC Institute of Advanced Studies in Agriculture (PIASA)
Pakistan Agricultural Research Council, Pakistan
Increased tiller number.
( Awan et al., 2024 )
SDN1
CRISPR/Cas
National Institute for Biotechnology and Genetic Engineering
Quaid-i-Azam University, Pakistan
Altered root architecture with increased tillers and total grain weight.
( Rahim et al., 2023 )
SDN1
CRISPR/Cas
Quaid-e-Azam University
National Agricultural Research Centre (NARC)
The University of Haripur, Pakistan
King Saud University, Saudi Arabia
Nile University
Ain Shams University, Egypt
Chonnam National University, South Korea
Delayed flowering.
( Kim et al., 2024 )
SDN1
CRISPR/Cas
Myongji University, Korea

Traits related to industrial utilization

Pollen Self-Elimination, which prevents pollen transgene dispersal.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences (CAAS)
Northwest A&
F University
Hainan Yazhou Bay Seed Lab
Henan Jinyuan Seed Industry Co., China
International Maize and Wheat Improvement Center (CIMMYT), Mexico
Early heading: in regions with short growing seasons, early maturing varieties to escape frost damage are required.
(Sohail et al., 2022)
SDN1
CRISPR/Cas
China National Rice Research Institute
Northern Center of China National Rice Research Institute
Zhejiang A&
F University, China
Mir Chakar Khan Rind University
Agriculture Research System Khyber, Pakistan
Ministry of Agriculture, Bangladesh
Agriculture Research Center, Egypt

Traits related to herbicide tolerance

Herbicide tolerance: Bispyribac-sodium (BS). BS is a pyrimidinyl carboxy herbicide.
(Zafar et al., 2023)
SDN2
CRISPR/Cas
Constituent College of Pakistan Institute of Engineering and Applied Sciences
Engineering and Management Sciences (BUITEMS), Pakistan

Traits related to storage performance

Reduced enzymatic browning. The formation of dark-colored precipitates in fruits and vegetables causes undesirable changes in organoleptic properties and the loss of nutritional quality.
( Gonzalez et al., 2020 )
SDN1
CRISPR/Cas
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Laboratorio de Agrobiotecnología (INTA)
Universidad Nacional de Mar del Plata, Argentina
Swedish University of Agricultural Sciences, Sweden