Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 14 results

Traits related to abiotic stress tolerance

Increased tolerance to salinity stress. Development of lines with reduced inositol hexakisphosphate (IP6) content may enhance phosphate and mineral bioavailability. ICP6 is a major storage form of phosphate in cereal grains.
( Vicko et al., 2020 )
SDN1
CRISPR/Cas
Czech Academy of Sciences, Czech Republic
Improved lodging resistance.
( Wakasa et al., 2024 )
SDN1
CRISPR/Cas
Institute of Agrobiological Sciences
Institute of Crop Sciences, Japan
Increased drought tolerance.
( Abdallah et al., 2022 )
SDN1
CRISPR/Cas
Cairo University, Egypt
Crop Improvement and Genetics Unit, USA
Increased tolerance to salinity stress. Improved rice yields in saline paddy fields by root angle modifications to adapt to climate change.
( Kitomi et al., 2020 )
SDN1
CRISPR/Cas
National Agriculture and Food Research Organization (NARO)
Tohoku University
Institute of Agrobiological Sciences
Japan Science and Technology Agency (JST)
Advanced Analysis Center
National Institute of Advanced Industrial Science and Technology (AIST), Japan
Improved salt stress resistance. Significant increase in the shoot weight, the total chlorophyll content, and the chlorophyll fluorescence under salt stress. Also high antioxidant activities coincided with less reactive oxygen species (ROS).
( Shah Alam et al., 2022 )
SDN1
CRISPR/Cas
Zhejiang University, China
Taif University, Saudi Arabia
Alexandria University, Egypt
Enhanced responses to abscisic acid (ABA), which plays an important role in drought stress responses in plants. Improved drought tolerance through stomatal regulation and increased primary root growth under non-stressed conditions.
( Ogata et al., 2020 )
SDN1
CRISPR/Cas
Japan International Research Center for Agricultural Sciences (JIRCAS)
RIKEN Center for Sustainable Resource Science
University of Tsukuba, Japan

Traits related to industrial utilization

Generating male sterility lines (MLS) and enhanced tolerance against drought stress. Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Secgin et al., 2022 )
SDN1
CRISPR/Cas
Ondokuz Mayıs University
Burdur Mehmet Akif Ersoy University
Ondokuz Mayıs University, Turkey
Agricultural Research Center (ARC), Egypt
Dwarf plants that retain favourable fruit traits.
( Nagamine et al., 2024 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan
Restoring cytoplasmic sterility.
( Kazama et al., 2019 )
SDN2
TALENs
Tohoku University
Tamagawa University
The University of Tokyo
National Institute of Genetics
Tokyo Institute of Technology
Tamagawa University
Japan Science and Technology Agency, Japan
Early heading: in regions with short growing seasons, early maturing varieties to escape frost damage are required.
(Sohail et al., 2022)
SDN1
CRISPR/Cas
China National Rice Research Institute
Northern Center of China National Rice Research Institute
Zhejiang A&
F University, China
Mir Chakar Khan Rind University
Agriculture Research System Khyber, Pakistan
Ministry of Agriculture, Bangladesh
Agriculture Research Center, Egypt
Significantly longer seed dormancy period, may result in reduced pre-harvest sprouting of grains on spikes.
( Abe et al., 2019 )
SDN1
CRISPR/Cas
Institute of Crop Science
Okayama University
Yokohama City University
Institute of Agrobiological Sciences
Obihiro University of Agriculture and Veterinary Medicine, Japan
Production of herbicide-sensitive strain to prevent volunteer infestation. Volunteer rice grows when cultivated rice seed fall into fields, overwinter and spontaneously germinate the next spring.
( Komatsu et al., 2020 )

BE
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization (NARO)
Graduate School of Science
Technology and Innovation, Japan
Fertility restoration of cytoplasmic male sterility.
( Suketomo et al., 2020 )
SDN1
CRISPR/Cas
Tohoku University, Japan
Confer male and female sterility to prevent the risk of trasgene flow from transgenic plants to their wild relatives.
( Shinoyama et al., 2020 )
SDN1
TALENs
Fukui Agricultural Experiment Station
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization (NARO)
Japan Science and Technology Agency (JST)
Yokohama City University, Japan
Altai State University, Russia