Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 28 results

Traits related to biotic stress tolerance

Fungal resistance: Resistance against the blast fungus Mangaporthe oryzae.
(Bundó et al., 2024)
SDN1
CRISPR/Cas
Campus Universitat Autònoma de Barcelona (UAB)
Consejo Superior de Investigaciones Científcas (CSIC), Spain
Academia Sinica No 128, Taiwan
Rapid detection of Sclerotium rolfsii, the causal agent of stem and root rot disease. This technique is effective for identification of pathogens, with potential for on-site testing.
( Changtor et al., 2023 )
SDN1
CRISPR/Cas
Naresuan University, Thailand
Virus resistance: Immunity to cucumber vein yellowing virus infection (Ipomovirus) and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus.
(Chandrasekaran et al., 2016)
SDN1
CRISPR/Cas
Volcani Center, Israel
Mutants were compromised in infectivity of Phytophthora palmivora, a destructive oomycete plant pathogen with a wide host range
( Pettongkhao et al., 2022 )
SDN1
CRISPR/Cas
Prince of Songkla University, Thailand
University of Hawaii at Manoa
East-West Center, USA
Sainsbury Laboratory Cambridge University (SLCU), UK
Resistance to parasitic weed: Phelipanche aegyptiaca. The obligate root parasitic plant causes great damages to important crops and represents one of the most destructive and greatest challenges for the agricultural economy.
(Bari et al., 2021)
SDN1
CRISPR/Cas
Central University of Punjab, India
Newe Ya’ar Research Center
Agricultural Research Organization (ARO), Israel
Viral resistance: enhanced resistance against wheat dwarf virus, which is a causal agent of wheat viral disease and can significantly impact wheat production worldwide.
(Yuan et al., 2024)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Northwest A&
F University, China

Norwegian Institute of Bioeconomy Research, Norway
Viral resistance: resistance to potyvirus potato virus Y (PVY), which causes serious yield loss.
(Kumar et al., 2022)
SDN1
CRISPR/Cas
Agricultural Research Organization, Israel
High resistance to powdery mildew under semi-commercial growth conditions.
( Shnaider et al., 2022 )
SDN1
CRISPR/Cas
Agricultural Research Organization Volcani Center, Israel
Resistance to parasitic weed: Phelipanche aegyptiaca. The obligate root parasitic plant causes great damages to important crops and represents one of the most destructive and greatest challenges for the agricultural economy.
(Bari et al., 2019)
SDN1
CRISPR/Cas
Newe Ya’ar Research Center,
Agricultural Research Organization (ARO), Israel
University of California, USA
Increased basal immunity and broad spectrum disease resistance.
( Leibman-Markus et al., 2023 )
SDN1
CRISPR/Cas
Volcani Institute
Tel Aviv University, Israel

Traits related to abiotic stress tolerance

Increased tolerance to cold stress.
( Teper-Bamnolker et al., 2022 )
SDN1
CRISPR/Cas
The Volcani Institute
The Hebrew University of Jerusalem
Danziger Innovations Limited, Israel
Altered cuticle properties to enhance drought tolerance.
( Negin et al., 2021 )
SDN1
CRISPR/Cas
Weizmann Institute of Science, Israel
Improved salinity tolerance.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
National Taiwan University, Taiwan
University of North Carolina, USA
Increased drought tolerance: suppresses xylem vessel proliferation, leading to lower water conductance, and reduced water-loss under water-deficit conditions.
(Illouz-Eliaz et al., 2020)
SDN1
CRISPR/Cas
Institute of Plant Sciences and Genetics in Agriculture
The Robert H. Smith Faculty of Agriculture
The Hebrew University of Jerusalem, Israel
Increased root length, which can restore good performance under water stress.
( Gabay et al., 2023 )
SDN1
CRISPR/Cas
University of California
Howard Hughes Medical Institute, USA
University of Haifa, Israel
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Universidad Nacional de San Martín (UNSAM), Argentina
Fudan University
China Agricultural University, China
Karolinska Institutet, Sweden

Traits related to improved food/feed quality

Reduced content of anti-nutritional factors in soybean seeds, leading to improved digestibility.
( Figliano et al., 2023 )
SDN1
CRISPR/Cas
UEL - Universidade Estadual de Londrina, Portugal
Production of high amylose and resistant starch rice. Starch accounts for 80 to 90% of the total mass of rice seeds and is low in resistant starch (RS), which is beneficial in preventing various diseases. Starch with high amylose content (AC) and RS have a lower GI value. Foods with low GI value have beneficial effects on glycemic control.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
National Chiayi University
Taiwan Agricultural Research Institute Chiayi Agricultural Experiment Branch, Taiwan
Important metabolic changes affecting tomato fruit quality. Reduced contents of the anti-nutrient oxalic acid.
( Gago et al., 2017 )
SDN1
ZFN
University of Algarve, Portugal
Centre for Research and Technology Hellas
Technological Educational Institution of Crete, Greece
Reduce or eliminate amylose content in root starch. Amylose influences the physicochemical properties of starch during cooking and processing.
( Bull et al., 2018 )
SDN1
CRISPR/Cas
Institute of Molecular Plant Biology, Switzerland
Parthenocarpy: seedless tomato. Industrial purposes and direct eating quality.
(Klap et al., 2016)
SDN1
CRISPR/Cas
Agricultural Research Organization, Israel

Traits related to increased plant yield and growth

Customize tomato cultivars for urban agriculture: increased compactness and decreased growth cycle of tomato plants.
(Kwon et al., 2020)
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory
Cornell University
University of Florida, USA
Wonkwang University, South Korea
Weizmann Institute of Science, Israel
Plant development. Phenotypes consistent with increased GA response: tall and slender with light green vegetation.
(Lor et al., 2014)
SDN1
TALENs
University of Minnesota, USA
Hebrew University of Jerusalem, Israel

Traits related to industrial utilization

Accelerate flowering, a rare event under glasshouse conditions. Modified starch.
( Bull et al., 2018 )
SDN3
CRISPR/Cas
Institute of Molecular Plant Biology, Switzerland
Bio-fuel production: decreased lignin content improves cell wall composition for production of bio-ethanol.
(Laksana et al., 2024)
SDN1
CRISPR/Cas
Burapha University Sakaeo Campus
Kasetsart University, Thailand

Traits related to herbicide tolerance

Dinitroanaline
( Liu et al., 2021 )

BE
Chinese Academy of Agricultural Sciences
China Agricultural University
Zhejiang University
Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, China
Norwegian Institute of Bioeconomy Research, Norway
Bispyribac sodium
( Kuang et al., 2020 )

BE
Chinese Academy of Agricultural Sciences
China Agricultural University
Zhejiang University, China
Norwegian Institute of Bioeconomy Research, Norway

Traits related to product color/flavour

Yellow and orange fruit color.
( Dahan-Meir et al., 2018 )
SDN2
CRISPR/Cas
Weizmann Institute of Science, Israel
Fruit color: tangerine
(Ben Shlush et al., 2021)
SDN2
CRISPR/Cas
The Weizmann Institute of Science, Israel