Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 6 results

Traits related to biotic stress tolerance

Fungal resistance: strong resistance against Fusarium oxysporum f. sp. lycopersici (Fol), which causes Fusarium Wilt Disease in tomato.
(Debbarma et al., 2023)
SDN1
CRISPR/Cas
CSIR-North East Institute of Science and Technology
Academy of Scientific and Innovative Research
Assam Agricultural University
Central Muga Eri Research and Training Institute
International Crop Research Institute for the Semi Arid Tropics, India
Bacterial resistance: enhanced disease resistance to Clavibacter michiganensis subsp. michiganensis infection.
(García-Murillo et al., 2023)

CRISPR/Cas
Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico
Resistance to parasitic weed: Phelipanche aegyptiaca. The obligate root parasitic plant causes great damages to important crops and represents one of the most destructive and greatest challenges for the agricultural economy.
(Bari et al., 2021)
SDN1
CRISPR/Cas
Central University of Punjab, India
Newe Ya’ar Research Center
Agricultural Research Organization (ARO), Israel

Traits related to increased plant yield and growth

Delayed onset of ripening.
( Nizampatnam et al., 2023 )
SDN1
CRISPR/Cas
University of Hyderabad
SRM University-AP, India

Traits related to industrial utilization

Generating male sterility lines (MLS) and enhanced tolerance against drought stress. Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Secgin et al., 2022 )
SDN1
CRISPR/Cas
Ondokuz Mayıs University
Burdur Mehmet Akif Ersoy University
Ondokuz Mayıs University, Turkey
Agricultural Research Center (ARC), Egypt
Male sterility: mutants did not produce pollen and induced a parthenocarpic fruit set.
(Gökdemir et al., 2022)
SDN1
CRISPR/Cas
Ondokuz Mayıs University
Burdur Mehmet Akif Ersoy University, Turkey