Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Displaying 43 results

Traits related to biotic stress tolerance

Viral resistance: Highly efficient resistance against wheat dwarf virus (WDV), an economically important virus. WDV infect both wheat and barley causing severe yield losses. The natural resistance resources are limited.
(Kis et al., 2019)
SDN1
CRISPR/Cas
University of Pannonia
Hungarian Academy of Sciences
Eötvös Loránd University University
Szent István University, Hungary
Fungal resistance: Resistance to pathogen Colletotrichum truncatum, causing anthracnose, a major disease accounting for significant pre- and post-harvest yield losses.
(Mishra et al., 2021)
SDN1
CRISPR/Cas
Centurion University of Technology and Management
Siksha O Anusandhan University
Rama Devi Women'
s University, India
Viral resistance: reduced viral accumulation and amelioration of virus-induced symptoms by Potato Virus Y.
(Lucioli et al., 2022)
SDN1
CRISPR/Cas
ENEA
Council for Agricultural Research and Economics (CREA), Italy
National Agricultural Research and Innovation Centre, Hungary
Viral resistance: increased resistance against Tobacco Mosaic Virus (TMV).
(Jogam et al., 2023)
SDN1
CRISPR/Cas
Kakatiya University
Center of Innovative and Applied Bioprocessing (DBT-CIAB), India
University of Minnesota
East Carolina University, USA
Resistance to parasitic weed: Phelipanche aegyptiaca. The obligate root parasitic plant causes great damages to important crops and represents one of the most destructive and greatest challenges for the agricultural economy.
(Bari et al., 2021)
SDN1
CRISPR/Cas
Central University of Punjab, India
Newe Ya’ar Research Center
Agricultural Research Organization (ARO), Israel
Bacterial resistance: Plant moderately resistant against a strain of the gram-negative bacterium, Xanthomonas oryzae pv. oryzae (Xoo). Xoo severely impacts rice productivity by causing bacterial leaf blight disease.
(Bhagya Sree et al., 2023)
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Fungal resistance: increased resistance to Phytophthora infestans, causing late blight disease, the most serious disease of potato crops worldwide. The pathogen can infect the leaves, stems and tubers of potato plants. An unprotected field can be completely destroyed in several days.
(Kieu et al., 2021)
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
University of Copenhagen, Denmark
Viral resistance: increased resistance to infection with the potato virus Y (PVY) and tolerance to salt and osmotic stress. PVY is one of the most economically important potato pathogens
(Makhotenko et al., 2019)
SDN1
CRISPR/Cas
Russia Moscow State University, Russia
Doka Gene Technologies Ltd, USA
Viral resistance: resistance to rice tungro disease (RTD), the most important viral disease that limits rice production.
(Kumam et al., 2022)
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University
International Centre for Genetic Engineering and Biotechnology
ICAR-Indian Institute of Rice Research, India
Fungal resistance: strong resistance against Fusarium oxysporum f. sp. lycopersici (Fol), which causes Fusarium Wilt Disease in tomato.
(Debbarma et al., 2023)
SDN1
CRISPR/Cas
CSIR-North East Institute of Science and Technology
Academy of Scientific and Innovative Research
Assam Agricultural University
Central Muga Eri Research and Training Institute
International Crop Research Institute for the Semi Arid Tropics, India
Bacterial resistance: Resistance/moderately resistance against Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv oryzae (Xoo). BLB is a major constraint in rice production.
(Arulganesh et al., 2022)
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India

Traits related to abiotic stress tolerance

Reduced arsenic content. Arsenic accumulation in rice poses a threat to human health.
( Singh et al., 2024 )
SDN1
CRISPR/Cas
Academy of Scientific and Innovative Research (AcSIR)
CSIR-National Botanical Research Institute
CSIR-National Botanical Research Institute, India
Increased salt-tolerance.
( Antonova et al., 2024 )
SDN1
CRISPR/Cas
Institute of Plant and Animal Ecology (IPAE)
N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Institute of Cytology and Genetics (ICG), Russia
Drought and salt tolerance.
( Kumar et al., 2020 )
SDN1
CRISPR/Cas
ICAR-Indian Agricultural Research Institute
Bhartidasan University, India

Traits related to improved food/feed quality

Reduced nicotine levels.
Nicotine is an addictive compound leading to severe diseases.
( Singh et al., 2023 )
SDN1
CRISPR/Cas
CSIR-National Botanical Research Institute
Academy of Scientific and Innovative Research (AcSIR)
Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), India
Generation of beta-carotene-enriched banana fruits. Carotenoids, the source of pro vitamin A, are an essential component of dietary antioxidants. Low intakes and poor bioavailability of provitamine A from the vegetarian diet are considered the main reasons for the widespread prevalence of Vitamine A deficiency.
( Kaur et al., 2020 )
SDN1
CRISPR/Cas
Ministry of Science and Technology (Government of India)
Panjab University, India
Glossy sheat phenotype.
( Gerasimova et al., 2023 )
SDN1
CRISPR/Cas
Siberian Branch of the Russian Academy of Sciences
Vavilov Institute of Plant Genetic Resources (VIR)
Siberian Branch of the Russian Academy of Sciences, Russia

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
Improved aleurone layer with enhanced grain protein content. Improved grain nutritional quality by improved accumulation of essential dietary minerals (Fe, Zn, K, P, Ca) in the endosperm of rice grain. Improved root and shoot architecture.
( Achary et al., 2021 )
SDN1
CRISPR/Cas
International Centre for Genetic Engineering and Biotechnology, India
Fragrant rice. Introduction of aroma into any non-aromatic rice varieties.
( Ashokkumar et al., 2020 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Slender grains in bold grain varieties.
( Shanthinie et al., 2024 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Seeds low in glucosinolate content and other plant parts high in glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock, they also play a role in plant defence.
( Mann et al., 2023 )
SDN1
CRISPR/Cas
National Institute of Plant Genome Research
University of Delhi South Campus, India
Reduced levels of very long chain saturated fatty acids in kernels, which are associated with revalance of atherosclerosis and cardiovascular disease.
( Huai et al., 2024 )
SDN1
CRISPR/Cas
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, China
International Crops Research Institute of the Semi-Arid Tropics (ICRISAT), India
Murdoch University, Australia
Improved digestibility of kafirins, which increases the grain nutritional value.
( Elkonin et al., 2023 )
SDN1
CRISPR/Cas
Federal Centre of Agriculture Research of South-East Region
Institute of Biochemistry and Genetics, Russia
Increased amylose content in the seeds, thus a lower Glycemic Index (GI) value. Low GI rice is preferred to avoid a sudden rise in glucose in the bloodstream. Starch with a high GI threatens healthy individuals to get diabetes type II and proves extremely harmful for existing diabetes type II patients.
( Jameel et al., 2022 )
SDN1
CRISPR/Cas
Jamia Millia Islamia
International Centre for Genetic Engineering and Biotechnology, India
King Saud University, Saudi Arabia
Reduced levels of phytic acid (PA). PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Krishnan et al., 2023 )
SDN1
CRISPR/Cas
ICAR-Indian Agricultural Research Institute (IARI)
Bharathidasan University, India
Increased iron content in potato plants. Iron is an essential micronutrient.
( Chauhan et al., 2024 )
SDN1
CRISPR/Cas
Panjab University
Panjab University
National Institute of Plant Genome Research, India
University of Minnesota, USA
Improved kafirin digestibility, which increases the grain nutritional value.
( Elkonin et al., 2023 )
SDN1
CRISPR/Cas
Federal Centre of Agriculture Research of South-East Region
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Russia

Traits related to increased plant yield and growth

Increased stomatal density, stomatal conductance, photosynthetic rate and transpiration rate. Fine tuning the stomatal traits can enhance climate resilience in crops.
( Rathnasamy et al., 2023 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University
Sugarcane Breeding Institute, India
Conferred lodging resistance. Tef is a staple food, and valuable cash crop in Ethiopia. Lodging is a major limitation to its production.
( Beyene et al., 2022 )
SDN1
CRISPR/Cas
Donald Danforth Plant Science Center
Corteva Agriscience
Michigan State University, USA
Ethiopian Institute of Agricultural Research, Ethiopia
Control grain size and seed coat color.
( Tra et al., 2021 )

BE
International Rice Research Institute, Philippines
Dahlem Center of Plant Sciences Freie Universität, Germany
Synthetic Biology, Biofuel and Genome Editing R&
D Reliance Industries Ltd, India
Delayed onset of ripening.
( Nizampatnam et al., 2023 )
SDN1
CRISPR/Cas
University of Hyderabad
SRM University-AP, India
Confer shoot architectural changes for increased resource inputs to increase crop yield.
( Stanic et al., 2021 )
SDN1
CRISPR/Cas
University of Calgary, Canada
SRM Institute of Technology, India

Traits related to industrial utilization

Conversion of hulled into naked barley.
( Gasparis et al., 2018 )
SDN1
CRISPR/Cas
National Research Institute
Warsaw University of Life Sciences (SGGW), Poland
Genetic variability. The genetically reprogrammed rice plants can act as donor lines to stabilize important agronomic traits or can be a potential resource to create more segregating population.
( K et al., 2021 )
SDN1
CRISPR/Cas
University of Agricultural Sciences
Regional Centre for Biotechnology, India
Manipulation of self-incompatibility.
( Zhang et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Aarhus University
DLF Seeds A/S, Denmark
Confer male and female sterility to prevent the risk of trasgene flow from transgenic plants to their wild relatives.
( Shinoyama et al., 2020 )
SDN1
TALENs
Fukui Agricultural Experiment Station
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization (NARO)
Japan Science and Technology Agency (JST)
Yokohama City University, Japan
Altai State University, Russia
Induction of haploid plants and a reduced seed set for rice breeding.
( Yao et al., 2018 )
SDN2
CRISPR/Cas
ZhongGuanCun Life Science Park, China
Syngenta India Limited
Technology Centre
Medchal Mandal, India
Syngenta Crop Protection
LLC
Research Triangle Park, USA
Haploid induction to accelerate breeding in crop plants.
( Rangari et al., 2023 )
SDN1
CRISPR/Cas
Punjab Agricultural University, India

Traits related to product color/flavour

Albino phenotype.
( Kaur et al., 2017 )
SDN1
CRISPR/Cas
National Agri-Food Biotechnology Institute (NABI), India
Albino phenotype.
( Phad et al., 2023 )
SDN1
CRISPR/Cas
Plant Biotechnology Research Center, India
Color modification due to reduced anthocyanin accumulation.
( Klimek-Chodacka et al., 2018 )
SDN1
CRISPR/Cas
University of Agriculture in Krakow, Poland
East Carolina University
University of Maryland, USA
Albino phenotype
( Bánfalvi et al., 2020 )
SDN1
CRISPR/Cas
NARIC Agricultural Biotechnology Institute, Hungary

Traits related to storage performance

Enhanced oleic acid to linoleic acid ratio. This adjusted ratio can improve the shelf life of peanut oil.
( Rajyaguru et al., 2024 )
SDN1
CRISPR/Cas
Junagadh Agricultural University, India