Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 82 results

Traits related to biotic stress tolerance

Viral resistance: increased resistance against Tobacco Mosaic Virus (TMV).
(Jogam et al., 2023)
SDN1
CRISPR/Cas
Kakatiya University
Center of Innovative and Applied Bioprocessing (DBT-CIAB), India
University of Minnesota
East Carolina University, USA
Resistance to parasitic weed: Phelipanche aegyptiaca. The obligate root parasitic plant causes great damages to important crops and represents one of the most destructive and greatest challenges for the agricultural economy.
(Bari et al., 2021)
SDN1
CRISPR/Cas
Central University of Punjab, India
Newe Ya’ar Research Center
Agricultural Research Organization (ARO), Israel
Bacterial resistance: Plant moderately resistant against a strain of the gram-negative bacterium, Xanthomonas oryzae pv. oryzae (Xoo). Xoo severely impacts rice productivity by causing bacterial leaf blight disease.
(Bhagya Sree et al., 2023)
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Viral resistance: Resistance to Tomato brown rugose fruit virus (ToBRFV), a major threat to the production of tomato.
(Ishikawa et al., 2022)
SDN1
CRISPR/Cas
Institute of Agrobiological Sciences
Takii and Company Limited, Japan
Viral resistance: resistance to rice tungro disease (RTD), the most important viral disease that limits rice production.
(Kumam et al., 2022)
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University
International Centre for Genetic Engineering and Biotechnology
ICAR-Indian Institute of Rice Research, India
Fungal resistance: Reduced susceptibility to necrotrophic fungi. Necrotrophic fungi, such as Botrytis cinerea and Alternaria solani, cause severe damage in tomato production.
(Ramirez Gaona et al., 2023)
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Takii &
Company Limited, Japan
Fungal resistance: strong resistance against Fusarium oxysporum f. sp. lycopersici (Fol), which causes Fusarium Wilt Disease in tomato.
(Debbarma et al., 2023)
SDN1
CRISPR/Cas
CSIR-North East Institute of Science and Technology
Academy of Scientific and Innovative Research
Assam Agricultural University
Central Muga Eri Research and Training Institute
International Crop Research Institute for the Semi Arid Tropics, India
Fungal and bacterial resistance: Increased resistance to late blight pathogen Phytophthora infestans, common scab, and the early blight pathogen Alternaria solani.
(Karlsson et al., 2024)
SDN1
CRISPR/Cas
University of Agricultural Sciences, Sweden
Nematode resistance: decreased susceptibility against root-knot nematodes, showing fewer gall and egg masses.
(Noureddine et al., 2023)
SDN1
CRISPR/Cas
Université Côte d’Azur
Université de Toulouse, France
Kumamoto University, Japan
Bacterial resistance: Resistance/moderately resistance against Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv oryzae (Xoo). BLB is a major constraint in rice production.
(Arulganesh et al., 2022)
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Fungal resistance: increased resistance to Phytophthora infestans, causing late blight disease, the most serious disease of potato crops worldwide. The pathogen can infect the leaves, stems and tubers of potato plants. An unprotected field can be completely destroyed in several days.
(Kieu et al., 2021)
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
University of Copenhagen, Denmark
Viral resistance: improved resistance against a tobamovirus, which could threaten tomato, tobacco, potato and squash plants.
(Miyoshi et al., 2024)
SDN1
CRISPR/Cas
Ehime University
Ehime Research Institute of Agriculture, Japan
Fungal resistance: Resistance against the blast fungus Mangaporthe oryzae.
(Bundó et al., 2024)
SDN1
CRISPR/Cas
Campus Universitat Autònoma de Barcelona (UAB)
Consejo Superior de Investigaciones Científcas (CSIC), Spain
Academia Sinica No 128, Taiwan
Fungal resistance: Resistance to pathogen Colletotrichum truncatum, causing anthracnose, a major disease accounting for significant pre- and post-harvest yield losses.
(Mishra et al., 2021)
SDN1
CRISPR/Cas
Centurion University of Technology and Management
Siksha O Anusandhan University
Rama Devi Women'
s University, India
Bacterial resistance: improved resistance to Xanthomonas oryzae, which causes bacterial blight, a devastating rice disease resulting in yield losses.
(Oliva et al., 2019)
SDN1
CRISPR/Cas
International Rice Research Institute, Philippines
University of Missouri
University of Florida
Iowa State University
Donald Danforth Plant Science Center, USA
Université Montpellier, France
Heinrich Heine Universität Düsseldorf
Max Planck Institute for Plant Breeding Research
Erfurt University of Applied Sciences, Germany
Nagoya University, Japan

Traits related to abiotic stress tolerance

Reduced arsenic content. Arsenic accumulation in rice poses a threat to human health.
( Singh et al., 2024 )
SDN1
CRISPR/Cas
Academy of Scientific and Innovative Research (AcSIR)
CSIR-National Botanical Research Institute
CSIR-National Botanical Research Institute, India
Improved lodging resistance.
( Wakasa et al., 2024 )
SDN1
CRISPR/Cas
Institute of Agrobiological Sciences
Institute of Crop Sciences, Japan
Improved salinity tolerance.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
National Taiwan University, Taiwan
University of North Carolina, USA
Increased tolerance to salinity stress. Improved rice yields in saline paddy fields by root angle modifications to adapt to climate change.
( Kitomi et al., 2020 )
SDN1
CRISPR/Cas
National Agriculture and Food Research Organization (NARO)
Tohoku University
Institute of Agrobiological Sciences
Japan Science and Technology Agency (JST)
Advanced Analysis Center
National Institute of Advanced Industrial Science and Technology (AIST), Japan
Drought and salt tolerance.
( Kumar et al., 2020 )
SDN1
CRISPR/Cas
ICAR-Indian Agricultural Research Institute
Bhartidasan University, India
Increased root length, which can restore good performance under water stress.
( Gabay et al., 2023 )
SDN1
CRISPR/Cas
University of California
Howard Hughes Medical Institute, USA
University of Haifa, Israel
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Universidad Nacional de San Martín (UNSAM), Argentina
Fudan University
China Agricultural University, China
Karolinska Institutet, Sweden
Enhanced responses to abscisic acid (ABA), which plays an important role in drought stress responses in plants. Improved drought tolerance through stomatal regulation and increased primary root growth under non-stressed conditions.
( Ogata et al., 2020 )
SDN1
CRISPR/Cas
Japan International Research Center for Agricultural Sciences (JIRCAS)
RIKEN Center for Sustainable Resource Science
University of Tsukuba, Japan

Traits related to improved food/feed quality

Improved aleurone layer with enhanced grain protein content. Improved grain nutritional quality by improved accumulation of essential dietary minerals (Fe, Zn, K, P, Ca) in the endosperm of rice grain. Improved root and shoot architecture.
( Achary et al., 2021 )
SDN1
CRISPR/Cas
International Centre for Genetic Engineering and Biotechnology, India
High gamma-aminobutyric acid (GABA) content. GABA plays a key role in plant stress responses, growth, development and as a nutritional component of grain can also reduce the likelihood of hypertension and diabetes. Increased amino acid content. Higher seed weight and seed protein content.
( Akama et al., 2020 )
SDN1
CRISPR/Cas
Shimane University
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization
Yokohama City University, Japan
Production of high amylose and resistant starch rice. Starch accounts for 80 to 90% of the total mass of rice seeds and is low in resistant starch (RS), which is beneficial in preventing various diseases. Starch with high amylose content (AC) and RS have a lower GI value. Foods with low GI value have beneficial effects on glycemic control.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
National Chiayi University
Taiwan Agricultural Research Institute Chiayi Agricultural Experiment Branch, Taiwan
Increased gamma-Aminobutyric acid (GABA) accumulation by 7 to 15 fold while having variable effects on plant and fruit size and yield. GABA is a nonproteogenic amino acid and has health-promoting functions.
( Nonaka et al., 2017 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan
Starch with an increased amylose ratio and elongated amylopectin chains. In food products, high amylose content and long amylopectin chains contribute to a low glycaemic index (GI) after intake, playing a role in health benefits.
( Zhao et al., 2021 )
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Laboratorio de Agrobiotecnología (INTA), Argentina
Seedless tomatoes for industrial purposes and direct eating quality.
( Ueta et al., 2017 )
SDN1
CRISPR/Cas
Tokushima University, Japan
Fragrant rice. Introduction of aroma into any non-aromatic rice varieties.
( Ashokkumar et al., 2020 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Reduced steroidal glycoalkaloids.
( Yasumoto et al., 2019 )

TALENs
Osaka University
RIKEN Center for Sustainable Resource Science
Kobe University, Japan
Carotenoid accumulation to solve the problem of vitamin A deficiency that is prevalent in developing countries.
( Endo et al., 2019 )
SDN1
CRISPR/Cas
National Agriculture and Food Research Organization
Ishikawa Prefectural University, Japan
Slender grains in bold grain varieties.
( Shanthinie et al., 2024 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Increased carotenoid, lycopene, and β-carotene.
( Hunziker et al., 2020 )

BE
University of Tsukuba
Kobe University
Institute of Vegetable and Floricultural Science
NARO, Japan
Improved starch quality. Starch has many food and technical applications and is often modified to certain specifications.
( Andersson et al., 2017 )
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
High-quality sugar production by rice (98% sucrose content). Carbohydrates are an essential energy-source. Sugarcane and sugar beet were the only two crop plants used to produce sugar.
( Honma et al., 2020 )
SDN1
CRISPR/Cas
Fujian Agriculture and Forestry University, China
Faculty of Engineering
Kitami Institute of Technology
NagoyaUniversity
Tokyo Metropolitan University, Japan
Carnegie Institution for Science, USA
Seeds low in glucosinolate content and other plant parts high in glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock, they also play a role in plant defence.
( Mann et al., 2023 )
SDN1
CRISPR/Cas
National Institute of Plant Genome Research
University of Delhi South Campus, India
Reduced levels of very long chain saturated fatty acids in kernels, which are associated with revalance of atherosclerosis and cardiovascular disease.
( Huai et al., 2024 )
SDN1
CRISPR/Cas
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, China
International Crops Research Institute of the Semi-Arid Tropics (ICRISAT), India
Murdoch University, Australia
Increased amylose content in the seeds, thus a lower Glycemic Index (GI) value. Low GI rice is preferred to avoid a sudden rise in glucose in the bloodstream. Starch with a high GI threatens healthy individuals to get diabetes type II and proves extremely harmful for existing diabetes type II patients.
( Jameel et al., 2022 )
SDN1
CRISPR/Cas
Jamia Millia Islamia
International Centre for Genetic Engineering and Biotechnology, India
King Saud University, Saudi Arabia
Increased sugar content without decreased fruit weight. Sugar content is one of the most important quality traits of tomato.
( Kawaguchi et al., 2021 )
SDN1
CRISPR/Cas
Nagoya University
Kobe University
RIKEN Center for Sustainable Resource Science
University of Tsukuba, Japan
Altered fatty acid composition. High oleic/low linoleic acid rice. Oleic acid has potential health benefits and helps decrease lifestyle disease.
( Abe et al., 2018 )
SDN1
CRISPR/Cas
National Agriculture and Food Research Organization, Japan
Improved fatty acid composition. The content and abundance of fatty acids play an important role in nutritional and processing applications of oilseeds.
( Okuzaki et al., 2018 )
SDN1
CRISPR/Cas
Tamagawa University
Osaka Prefecture University
Tamagawa University, Japan
Reduced levels of phytic acid (PA). PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Krishnan et al., 2023 )
SDN1
CRISPR/Cas
ICAR-Indian Agricultural Research Institute (IARI)
Bharathidasan University, India
Increased iron content in potato plants. Iron is an essential micronutrient.
( Chauhan et al., 2024 )
SDN1
CRISPR/Cas
Panjab University
Panjab University
National Institute of Plant Genome Research, India
University of Minnesota, USA
Increased NH4+ and PO43− uptake, and photosynthetic activity under high CO2 conditions in rice. Largely increased panicle weight. Improved grain appearance quality or a decrease in the number of chalky grains.
( Iwamoto et al., 2022 )
SDN1
CRISPR/Cas
Institute of Agrobiological Sciences, Japan
Complete abolition of glycoalkaloids, causing a bitter taste and toxic to various organisms.
( Nakayasu et al., 2018 )
SDN1
CRISPR/Cas
Kobe University, Japan
Reduced nicotine levels.
Nicotine is an addictive compound leading to severe diseases.
( Singh et al., 2023 )
SDN1
CRISPR/Cas
CSIR-National Botanical Research Institute
Academy of Scientific and Innovative Research (AcSIR)
Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), India
Generation of beta-carotene-enriched banana fruits. Carotenoids, the source of pro vitamin A, are an essential component of dietary antioxidants. Low intakes and poor bioavailability of provitamine A from the vegetarian diet are considered the main reasons for the widespread prevalence of Vitamine A deficiency.
( Kaur et al., 2020 )
SDN1
CRISPR/Cas
Ministry of Science and Technology (Government of India)
Panjab University, India
Increased flavonoid content, functioning as allelochemicals and insect deterrents.
( Lam et al., 2019 )
SDN1
CRISPR/Cas
The University of Hong Kong
The Chinese University of Hong Kong
Shenzhen
Zhejiang Academy of Agricultural Sciences
Nanjing Forestry University, China
Kyoto University, Japan
Negligible levels of the possibly toxic steroidal glykoalkaloids (SGAs), but enhanced levels of steroidal saponins, which has pharmaceutically useful functions.
( Akiyama et al., 2017 )
SDN1
CRISPR/Cas
Kobe University
Riken Center for Sustainable Resource Science
Osaka University, Japan
Reduction of harmful ingredients: toxic steroidal glycoalkaloids (SGAs).
(Sawai et al., 2014)
SDN1
TALENs
RIKEN Center for Sustainable Resource Science
Chiba University, Japan

Traits related to increased plant yield and growth

Regulating fruit ripening, one of the most important concerns in the study of fleshy fruit species.
( Ito et al., 2015 )
SDN1
CRISPR/Cas
National Food Research Institute, Japan
Reduction of plant height through accumulation of ceramides. Plant height is an important agronomic trait of rice, it directly affects the yield potential and lodging resistance.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Nanchang University
Henan Agricultural University, China
Hokkaido University, Japan
Increased grain yield under phosphorus-deficient conditions.
( Ishizaki et al., 2022 )
SDN1
CRISPR/Cas
Japan International Research Center for Agricultural Sciences (JIRCAS), Japan
Increased tiller number and grain yield.
( Cui et al., 2023 )
SDN1
CRISPR/Cas
The University of Tokyo
Kyoto University
National Institute of Crop Science, Japan
Control grain size and seed coat color.
( Tra et al., 2021 )

BE
International Rice Research Institute, Philippines
Dahlem Center of Plant Sciences Freie Universität, Germany
Synthetic Biology, Biofuel and Genome Editing R&
D Reliance Industries Ltd, India
Elongated, occasionally peanut-like shaped fruit.
( Zheng et al., 2022 )
SDN1
CRISPR/Cas
Nagoya University
Kanazawa University, Japan
Huazhong Agricultural University, China
Delayed onset of ripening.
( Nizampatnam et al., 2023 )
SDN1
CRISPR/Cas
University of Hyderabad
SRM University-AP, India
Confer shoot architectural changes for increased resource inputs to increase crop yield.
( Stanic et al., 2021 )
SDN1
CRISPR/Cas
University of Calgary, Canada
SRM Institute of Technology, India
Altered plant architecture to inrease yield: increased node number on the main stem and branch number.
(Bao et al., 2019)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Huazhong Agricultural University, China
Duy Tan University, Vietnam
RIKEN Center for Sustainable Resource Science, Japan
Improved nitrogen use efficiency, growth and yield in low nitrogen environment.
( Liu et al., 2023 )
SDN1
CRISPR/Cas
The University of Tokyo, Japan
Increased stomatal density, stomatal conductance, photosynthetic rate and transpiration rate. Fine tuning the stomatal traits can enhance climate resilience in crops.
( Rathnasamy et al., 2023 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University
Sugarcane Breeding Institute, India
Range of beneficial phenotypes: additional tillers and smaller culms and panicles.
(Cui et al., 2020)
SDN1
CRISPR/Cas
China National Rice Research Institute
Huazhong Agricultural University, China
Yangzhou University, Nagoya University, Japan

Traits related to industrial utilization

Dwarf plants that retain favourable fruit traits.
( Nagamine et al., 2024 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan
Production of herbicide-sensitive strain to prevent volunteer infestation. Volunteer rice grows when cultivated rice seed fall into fields, overwinter and spontaneously germinate the next spring.
( Komatsu et al., 2020 )

BE
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization (NARO)
Graduate School of Science
Technology and Innovation, Japan
Induction of haploid plants and a reduced seed set for rice breeding.
( Yao et al., 2018 )
SDN2
CRISPR/Cas
ZhongGuanCun Life Science Park, China
Syngenta India Limited
Technology Centre
Medchal Mandal, India
Syngenta Crop Protection
LLC
Research Triangle Park, USA
Haploid induction to accelerate breeding in crop plants.
( Rangari et al., 2023 )
SDN1
CRISPR/Cas
Punjab Agricultural University, India
Fertility restoration of cytoplasmic male sterility.
( Suketomo et al., 2020 )
SDN1
CRISPR/Cas
Tohoku University, Japan
Confer male and female sterility to prevent the risk of trasgene flow from transgenic plants to their wild relatives.
( Shinoyama et al., 2020 )
SDN1
TALENs
Fukui Agricultural Experiment Station
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization (NARO)
Japan Science and Technology Agency (JST)
Yokohama City University, Japan
Altai State University, Russia
Restoring cytoplasmic sterility.
( Kazama et al., 2019 )
SDN2
TALENs
Tohoku University
Tamagawa University
The University of Tokyo
National Institute of Genetics
Tokyo Institute of Technology
Tamagawa University
Japan Science and Technology Agency, Japan
Genetic variability. The genetically reprogrammed rice plants can act as donor lines to stabilize important agronomic traits or can be a potential resource to create more segregating population.
( K et al., 2021 )
SDN1
CRISPR/Cas
University of Agricultural Sciences
Regional Centre for Biotechnology, India
Significantly longer seed dormancy period, may result in reduced pre-harvest sprouting of grains on spikes.
( Abe et al., 2019 )
SDN1
CRISPR/Cas
Institute of Crop Science
Okayama University
Yokohama City University
Institute of Agrobiological Sciences
Obihiro University of Agriculture and Veterinary Medicine, Japan

Traits related to herbicide tolerance

Herbicide tolerance: ALS-inhibiting
(Okuzaki et al., 2004)

ODM
Tohoku University, Japan
Resistance to ALS-inhibiting herbicides.
( Okuzaki et al., 2003 )

ODM
Tohoku University, Japan
Imazamox
( Shimatani et al. 2017 )

BE
Kobe University
University of Tsukuba
Meijo University, Japan
Herbicide resistance
( Shimatani et al. 2018 )

BE
Kobe University, Japan
University of Tsukuba, Japan

Traits related to product color/flavour

Flower color modification due to reduced anthocyanin content. Flower color is one of the most important traits in ornamental flowers.
( Nishihara et al. (2018) )
SDN1
CRISPR/Cas
Iwate Biotechnology Research Center, Japan
Albino phenotype.
( Kaur et al., 2017 )
SDN1
CRISPR/Cas
National Agri-Food Biotechnology Institute (NABI), India
Color modification: yellow. Ipomoea nil exhibits a variety of flower colours, except yellow.
(Watanabe et al., 2018)
SDN1
CRISPR/Cas
University of Tsukuba
National Agriculture and Food Research Organization, Japan
Albino phenotype.
( Phad et al., 2023 )
SDN1
CRISPR/Cas
Plant Biotechnology Research Center, India

Traits related to storage performance

Enhanced oleic acid to linoleic acid ratio. This adjusted ratio can improve the shelf life of peanut oil.
( Rajyaguru et al., 2024 )
SDN1
CRISPR/Cas
Junagadh Agricultural University, India
The fruit remains green and shows higher firmness as well as no early fermentation. This results in extended shelf-life which could reduce food loss and contribute to food security.
( Nonaka et al., 2023 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan
Reduced enzymatic browning. The formation of dark-colored precipitates in fruits and vegetables causes undesirable changes in organoleptic properties and the loss of nutritional quality.
( Gonzalez et al., 2020 )
SDN1
CRISPR/Cas
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Laboratorio de Agrobiotecnología (INTA)
Universidad Nacional de Mar del Plata, Argentina
Swedish University of Agricultural Sciences, Sweden