Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 17 results

Traits related to biotic stress tolerance

Insect-resistant plant.
( Wang et al., 2024 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Huanghuai University
Xinjiang Academy of Agricultural Sciences
School of Life Sciences, China
Fungal resistance: Enhanced resistance against Verticillium and Fusarium wilt, which threatens the cotton production world wide.
(Zhao et al., 2024)
SDN1
CRISPR/Cas
China Agricultural University
Xinjiang Academy of Agricultural Sciences, China
Insect resistance: Apolygus lucorum are less attracted to the plant.
(Teng et al., 2024)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Yunnan University
Shanxi Agricultural University
National Plant Protection Scientific Observation and Experiment Station
Biocentury Transgene (China) Co. Ltd., China
Fungal resistance: higher resistance to Verticillium dahliae infestation. Cotton verticillium wilt/cotton cancer, is a destructive disease, leading to 250-310 million USD economic losses each year in China.
(Zhang et al., 2018)
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Chinese Academy of Agricultural Sciences
Shanxi Academy of Agricultural Sciences, China

Traits related to improved food/feed quality

High-oleic acid content. Oleic acid has better oxidative stability than linoleic acid due to its monounsaturated nature. High levels of linoleic acid reduces the oxidative stability of cottonseed oil, which can cause rancidity, a short shelf life and production of detrimental trans-fatty acids.
( Chen et al., 2020 )
SDN1
CRISPR/Cas
Cotton Research Center of Shandong Academy of Agricultural Sciences
Huazhong Agricultural University, China
Glossy green phenotype and reduced cuticular wax load.
( Liu et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Hunan Agricultural University
Tianjin Kernel Vegetable Research Institute, China
Increased vitamin C content, increased oxidation stress tolerance and increased ascorbate content.
( Zhang et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China

Traits related to increased plant yield and growth

Improve biomass yield and salinity tolerance.
( Guan et al., 2020 )
SDN1
CRISPR/Cas
China Agricultural University
Shandong institute of agricultural sustainable development
Beijing Sure Academy of Biosciences, China
Oklahoma State University, USA
Improved root growth under high and low nitrogen conditions.
( Wang et al., 2017 )
SDN1
CRISPR/Cas
Anhui Agricultural University
Chinese Academy of Agricultural Sciences, China
Butterhead plant architecture.
( Xie et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Wuhan Academy of Agricultural Sciences, China
Semi-dwarf phenotype. High varieties are challenged by weak lodging and damages caused by storms, dwarf varieties are suitable for mechanized plant maintenance and fruit harvesting.
( Shao et al., 2020 )
SDN1
CRISPR/Cas
Guangdong Academy of Agricultural Sciences
Hunan Agricultural University
Chinese Academy of Sciences
University of Chinese Academy of Sciences, China
University of Florida, USA
Significantly improved photosynthesis and decreased leaf angles. The plant architecture is ideal for dense planting.
( An et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Enhanced photosynthesis and decreased leaf angles for improved plant architecture and high yields.
( An et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Late flowering phenotype.
( Liu et al., 2024 )
SDN1
CRISPR/Cas
China Agricultural University, China

Traits related to industrial utilization

Guidance for creating male-sterile lines to facilitate hybrid cotton production. Exploit heterosis for improvement of cotton.
( Ma et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Huanggang Normal University
Xinjiang Academy of Agricultural Sciences
Institute of Cotton Research of Chinese Academy of Agricultural Sciences, China

Traits related to product color/flavour

Crop modification: albino phenotype.
(Wang et al., 2017)
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
University of Pennsylvania, USA

Traits related to storage performance

Increased shelf-life. Banana fruit has a high economic importance but will ripen and decay in one week after exogenous ethylene induction. Fast ripening limits its storage, transportation and marketing.
( Hu et al., 2021 )
SDN1
CRISPR/Cas
Guangdong Academy of Agricultural Sciences
Guangdong Laboratory for Lingnan Modern Agriculture, China