Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Sdn Type

Displaying 19 results

Traits related to biotic stress tolerance

Fungal resistance: Fusarium oxysporum f.sp. niveum (FON), one of the most devastaging diseases affecting watermelons. FON progresses along xylem vessels, causing the hollow and dried-out stems.
(Zhang et al., 2020)
SDN1
CRISPR/Cas
Jiangsu Academy of Agricultural Sciences
Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, China
Reduced aphid damage to improve crop resistance to aphids or other insects. Restrict aphid sucking on watermelon.
( Li et al., 2021 )
SDN1
CRISPR/Cas
Beijing Academy of Agricultural and Forestry Sciences, China
Sensitive and specific visual detection method for Acidovorax citrulli, an important seed-borne disease of the cucurbits.
( Wang et al., 2024 )
SDN1
CRISPR/Cas
Fuyang Normal University
Anhui Jianzhu University
Southern Subtropicals Grops Research Institute, China

Traits related to abiotic stress tolerance

Increased tolerance to salinity stress. Development of lines with reduced inositol hexakisphosphate (IP6) content may enhance phosphate and mineral bioavailability. ICP6 is a major storage form of phosphate in cereal grains.
( Vicko et al., 2020 )
SDN1
CRISPR/Cas
Czech Academy of Sciences, Czech Republic

Traits related to improved food/feed quality

Lowering phytate synthesis in seeds. Phytate is an anti-nutritient.
( Vlčko and Ohnoutková, 2020 )
SDN1
CRISPR/Cas
Czech Academy of Sciences, Czech Republic
Zero amylose grain. Amylose levels significantly influence processing of grain.
( Li et al., 2024 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Qinghai University
Qinghai Academy of Agricultural and Forestry
Sciences
Shandong Academy of Agricultural Sciences, China
Changing grain composition: decrease in the prolamines, an increase in the glutenins, increased starch content, amylose content, and β-glucan content. The protein matrix surrounding the starch granules was increased.
(Yang et al., 2020)
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
Norwich Research Park, UK
CSIRO Agriculture and Food, Australia
Decreased seed size and promoted seed germination. To improve consumer experience for flesh-consumed watermelons, no (or small and sparse) seeds are better because the flesh portion is larger.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement, China
Increased grain hardness and reduced grain width. Grain hardness index of hina mutants was 95.5 on average, while that of the wild type was only 53.7, indicating successful conversion of soft barley into hard barley.Grain hardness, defined as the resistance of the kernel to deformation, is the most important and defining quality of barley and wheat.
( Jiang et al., 2022 )
SDN1
CRISPR/Cas
Qinghai Normal University
Chinese Academy of Sciences, China
Increased sucrose content.
( Ren et al., 2020 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
Capital Normal University
China Agricultural University, China
Cornell University
Robert W. Holley Center for Agriculture and Health, USA
Lower levels of D hordein. D hordein is one of the storage proteins in the grain, with a negative effect on malting quality.
( Li et al., 2020 )
SDN1
CRISPR/Cas
Qinghai Province Key Laboratory of Crop Molecular Breeding
Chinese Academy of Sciences
University of Chinese Academy of Sciences, China

Traits related to increased plant yield and growth

Decreased spike rachis node number and increased grain size and weight.
( Fan et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Hainan Yazhou Bay Seed Laboratory
Shandong Academy of Agricultural Sciences
China Agricultural University
Hubei Academy of Agricultural Sciences, China
Semi-dwarf phenotype to improve lodging resistance and increased seed dormancy. Increased seed dormancy can be beneficial for use in the malting industry.
( Cheng et al., 2023 )
SDN1
CRISPR/Cas
University of Tasmania
Murdoch University
Department of Primary Industries and Regional Development, Australia
Chinese Academy of Agricultural Sciences, China
Dwarfing phenotype.
( Sun et al., 2024 )
SDN1
CRISPR/Cas
Northwest A&
F University
Guangdong Academy of Agricultural Sciences
Shanxi Agricultural University, China

Traits related to industrial utilization

Male sterility.
( Zhang et al., 2021 )
SDN1
CRISPR/Cas
Northwest A&
F University, China
Establishment of maternal haploid induction. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Tian et al., 2023 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement, China
Gynoecious phenotype: only female flowers. Advantageous trait for production of hybrid seed by bees under spatial isolation, because it avoids hand emasculation and hand pollination.
(Zhang et al., 2019)
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
Chinese Academy of Agricultural Engineering Planning and Design, China

Traits related to herbicide tolerance

Tribenuron
( Tian et al., 2018 )

BE
Beijing Academy of Agriculture and Forestry Sciences
China Agricultural University, China

Traits related to product color/flavour

Albino phenotype. Diversity in fruit color. Watermelon is an important fruit croup throughout the world.
( Tian et al., 2016 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
China Agricultural University
Beijing University of Agriculture, China