Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 14 results

Traits related to biotic stress tolerance

Visual detection of Alternaria solani, the causal agent of early blight in potato, which poses a persistant threat to potato production worldwide. The platform is specific, sensitive and suitable for high-throughput detection.
( Guo et al., 2023 )
SDN1
CRISPR/Cas
Jilin University
Jilin Agricultural University
Shenzhen Campus of Sun Yat-sen University, China
Viral resistance: Resistance to Potato Virus Y (PVY), one of the most devastating viral pathogens causing substantial harvest losses.
(Zhan et al., 2019)

CRISPR/Cas
Hubei University
Huazhong Agricultural University, China
Max‐Planck‐Institut für Molekulare Pflanzenphysiologie, Germany
Bacterial resistance: Increased resistance to Erwinia amylovora, causing fire blight disease that threatens the apple and a wide range of ornamental and commercial Rosaceae host plants.
(Malnoy et al., 2016)
SDN1
CRISPR/Cas
Fondazione Edmund Mach, Italy
ToolGen Inc.
Institute for Basic Science
Seoul National University, South Korea
Fungal resistance: Improved resistance against Phytophtora without affecting potato growth and development.
(Bi et al., 2023)
SDN1
CRISPR/Cas
China Agricultural University
South China Agricultural University
Shanghai Normal University
Nanjing Agricultural University, China
Viral resistance: Resistance against potato leaf roll virus, potato virus Y, potato virus X and potato virus S, which have been recognized as the major potato viruses.
(Zhan et al., 2023)
SDN1
CRISPR/Cas
Hubei University
Huazhong Agricultural University
Chinese Academy of Agricultural Sciences, China

Traits related to abiotic stress tolerance

Fruits insensitive to the effectss of high temperature stress and with reduced browning phenotype caused by high temperatures.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Northwest A &
F University
College of Horticultural Science and Engineering, China

Traits related to improved food/feed quality

Glossy green phenotype and reduced cuticular wax load.
( Liu et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Hunan Agricultural University
Tianjin Kernel Vegetable Research Institute, China
Glucoraphanin(GR)-enriched broccoli. Broccoli contains important nutritional components and beneficial phytochemicals. GR, a major glucosinolate (GSL), protects the body against several chronic diseases.
( Kim et al., 2022 )
SDN1
CRISPR/Cas
Sejong University
Jeonbuk National University
Korea Research Institute of Bioscience and Biotechnology
Asia Seed Company Limited, South Korea
Reduction of steroidal glycoalkaloids (SGAs). SGAs in most potato tissues are toxic to humans when the fresh weight is over 200mg/kg. High SGAs content also damage the quality of potato tubers.
( Zheng et al., 2021 )
SDN1
CRISPR/Cas
Qinghai University, China

Traits related to increased plant yield and growth

Increased plant height, longer roots, smaller root growth angle and increased tuber weight.
( Zhao et al., 2024 )
SDN1
CRISPR/Cas
Yunnan Agricultural University
Chinese Academy of Sciences
Xuanhan County Plant Quarantine Station
Yuguopu District Agricultural Comprehensive Service Center
Ning'
er County Plant Protection and Plant Quarantine Station, China

Traits related to industrial utilization

Bioethanol production: Improved saccharification efficiency without compromising biomass yield.
(Kannan et al., 2017)
SDN1
TALENs
University of Florida
Novozymes North America Inc, USA
Korea Institute of Science and Technology (KIST), South Korea
Bio-fuel production: Reduced lignin content, improves cell wall composition for production of bio-ethanol.
(Jung et al., 2016)
SDN1
TALENs
Korea University, South Korea
University of Florida, USA

Traits related to herbicide tolerance

Strong ALS-herbicide resistance
( Wang et al., 2022 )
SDN1
CRISPR/Cas
Beijing Academy of Agriculture and Forestry Sciences, China

Traits related to product color/flavour

Alleviated browning of freshly cut potatoes.
( Shi et al., 2023 )
SDN1
CRISPR/Cas
Shandong Agricultural University, China