Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 11 results

Traits related to abiotic stress tolerance

Enhanced tolerance to drought and salt stress.
( Shen et al., 2023 )
SDN1
CRISPR/Cas
Chongqing University
Yunnan Agricultural University, China
Conferred thermotolerance and the stability of heat shock proteins.
( Huang et al., 2022 )
SDN1
CRISPR/Cas
Zhejiang University
Ministry of Agriculture and Rural Affairs of China
Shandong (Linyi) Institute of Modern Agriculture, China
Enhanced drought tolerance.
( Qiu et al., 2023 )
SDN1
CRISPR/Cas
Southwest University, China
Enhanced tolerance to heat stress involving ROS homeostasis. Less severe wilting and less membrane damage, lower reactive oxygen species (ROS) contents and higher activities and transcript levels of antioxidant enzymes, as well as higher expression of heat shock proteins and genes encoding heat stress transcription factors.
( Yu et al., 2019 )
SDN1
CRISPR/Cas
China Agricultural University
Renmin University of China, China
Enhanced drought tolerance.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
International Maize and Wheat Improvement Center, Mexico
Modulate aluminium resistance. Aluminum (Al) toxicity is the main factor inhibiting plant root development and reducing crops yield in acidic soils.
( Zhang et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Academy of Agricultural and Forestry Sciences
China Agricultural University, China
University of California, USA
Enhanced drought resistance through decreased stomata density and reduced water loss.
( Lv et al., 2024 )
SDN1
CRISPR/Cas
China Agricultural University
Sanya Institute of China Agricultural University, China
Increased root length, which can restore good performance under water stress.
( Gabay et al., 2023 )
SDN1
CRISPR/Cas
University of California
Howard Hughes Medical Institute, USA
University of Haifa, Israel
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Universidad Nacional de San Martín (UNSAM), Argentina
Fudan University
China Agricultural University, China
Karolinska Institutet, Sweden
Enhanced drought tolerance.
( Liu et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University, China
Enhanced cold tolerance.
( Fan et al., 2024 )
SDN1
CRISPR/Cas
Liaocheng University, China
Reduced arsenic content and increased arsenic tolerance. Arsenic is toxic to organisms and elevated its accumulation may pose health risks to humans.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Henan Agricultural University
Chinese Academy of Sciences
Henan Agricultural University, China