Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Displaying 117 results

Traits related to biotic stress tolerance

Fungal resistance: Decreased susceptibility against sheath blight disease caused by Rhizoctonia solani AGI-1A and is one of the three major rice diseases. Sheath blight disease can cause severe yield losses.
(Zhao et al., 2024)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Hebei Agricultural University
Agricultural College of Yangzhou University, China
The Ohio State University, USA
Robust rust resistance to pandemic stripe rust caused by Puccinia striiformis (Pst) without growth and yield penalty.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
Northwest A&
F University
Chinese Academy of Sciences, China
Fungal resistance: stripe rust resistance, caused by Puccinia striiformis f. sp. tritici. In appropriate environmental conditions and susceptible varieties, stripe rust can cause huge grain yield and quality loss.
(Li et al., 2023)
SDN1
CRISPR/Cas
Fudan University
Chinese Academy of Sciences
University of the Chinese Academy of Sciences
China Agricultural University
Guangzhou University
School of Life Science
Shandong Academy of Agricultural Sciences
Ministry of Agriculture
National Engineering Research Center for Wheat and Maize
Sichuan Agricultural University
Nanjing Agricultural University, China
Université Paris Cité
Université Paris-Saclay, France
Bacterial and fungal resistance: Resistance to bacterial blight and rice blight. Also spontaneous cell death, altered seed dormancy (pre-harvest sprouting) and enhanced growth.
(Liao et al., 2018)
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
Fungal resistance: Enhanced resistance to blast without affecting the major agronomic traits. Rice blast caused by Magnaporthe oryzae, is a devastating disease affecting rice production globally
(Nawaz et al., 2020)
SDN1
CRISPR/Cas
Guangxi University
South China Agricultural University, China
Resistance to Phytophthora sojae, which severely impairs soybean production.
( Yu et al., 2022 )
SDN1
CRISPR/Cas
Northeast Agricultural University
Chinese Academy of Agricultural Sciences
Jilin Academy of Agricultural Science
Shanghai Jiao Tong University
Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences, China
Bacterial resistance: Enhanced resistance to blast and bacterial blight.
(Zhang et al., 2024)
SDN1
CRISPR/Cas
China National Rice Research Institute, China
Disease resistant thermosensitive genic male sterility (TGMS) with enhanced resistance to rice blast and bacterial blight.
( Li et al., 2019 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Detection of Fumonisin B1 (FB1), a common mycotoxin found in agricultural products. FB1 is highly toxic, which can cause oxidative stress response and has been listed as a class 2B carcinogen. The method wx is highly specific and sensitive for FB1, has a rather simple, convenient and fast workflow.
( Qiao et al., 2023 )
SDN1
CRISPR/Cas
Kunming University of Science and Technology, China
Fungal resistance: enhanced resistance to powdery mildew (Erysiphe necator), a major fungal disease, threatening one of the most economically valuable horticular crops.
(Wan et al., 2020)
SDN1
CRISPR/Cas
Ministry of Agriculture, China
Northwest A&
F University
University of Maryland College Park, USA
Viral resistance: resistance against Soybean mosaic virus, which is a very common and destructive pathogenic virus.
(Gao et al., 2024)
SDN1
CRISPR/Cas
Nanjing Agricultural University
Beijing Vocational College of Agriculture
China Agricultural University
Shenyang Agricultural University, China
Fungal resistance: improved sheath blight resistance. Sheath blight disease caused by Rhizoctonia solani AGI-1A and is one of the three major rice diseases. Sheath blight disease can cause severe yield losses.
(Cao et al., 2021)
SDN1
CRISPR/Cas
Agricultural College of Yangzhou University
Jiangsu Yanjiang Institute of Agricultural Science
Yangzhou University
Testing Center of Yangzhou University
Ministry of Agriculture
Chinese Academy of Agricultural Sciences
Institutes of Agricultural Science and Technology Development, China
BASF, Germany
Visual detection of maize chlorotic mottle virus (MCMV), one of the important quarantine pathogens in China. This novel method is specific, rapid, sensitive and does not require special instruments and technical expertise.
( Duan et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University
Yazhou Bay Science and Technology City, China
Alexandria University, Egypt
Viral resistance: Strong barley yellow dwarf virusses (BYDV) resistance without negative effects on plant growth under field conditions. BYDV threatens efficient and stable production of wheat, maize, barley and oats.
(Wang et al., 2023)
SDN1
CRISPR/Cas
Henan Agricultural University
The Shennong Laboratory
Chinese Academy of Agricultural Sciences, China
Fungal resistance: higher resistance to Verticillium dahliae infestation. Cotton verticillium wilt/cotton cancer, is a destructive disease, leading to 250-310 million USD economic losses each year in China.
(Zhang et al., 2018)
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Chinese Academy of Agricultural Sciences
Shanxi Academy of Agricultural Sciences, China
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Xu et al., 2021)
SDN1
TALENs
Shanghai Jiao Tong University, China
Crop Diseases Research Institute, Pakistan
Broad-spectrum bacterial blight resistance.
( Xu et al., 2019 )
SDN1
CRISPR/Cas
Shanghai Jiao Tong University, China
Enhanced resistance against rice bacterial blight (BB) and bacterial leaf streak (BLS).
( Wang et al., 2024 )
SDN1
CRISPR/Cas
Zhejiang Normal University, China
Bacterial and fungal resistance: increased resistance against the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) and fungal pathogen Magnaporthe oryzae causing bacterial blight and rice blast, respectively.
(Liu et al., 2023)
SDN1
CRISPR/Cas
Hunan Agricultural University
Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance
Hunan Academy of Agricultural Sciences
State Key Laboratory of Hybrid Rice, China
Bacterial resistance: Enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), which cause bacterial blight and bacterial leaf streak, respectively.
(Peng et al., 2022)
SDN1
CRISPR/Cas
Nanjing Agricultural University
Shandong Agricultural University
Jiangsu University of Science and Technology, China
Fungal resistance: Assay for rapid detection of Diaporthe aspalathi, causal agent of Southern stem canker, which causes huge losses of soybean worldwide.
(Dong et al., 2024)
SDN1
CRISPR/Cas
Hainan University
Sanya Institute of China Agricultural University, China
Viral resistance: Partial resistance to rice black-streaked dwarf virus (RBSDV). RBSDV is a serious threat in Chinese rice production.
(Wang et al., 2021)
SDN1
CRISPR/Cas
Jiangsu Academy of Agricultural Sciences
Nanjing Agricultural University, China
Visual detection of brassica yellows virus (BrYV), an economically important virus on cruciferous species. This assay allows for convenient, portable, rapid, low-cost, highly sensitive and specific detection and has great potential for on-site monitoring of BrYV.
( Xu et al., 2023 )
SDN1
CRISPR/Cas
Guizhou University, China
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Shan et al., 2013)
SDN1
TALENs
Chinese Academy of Sciences, University of Electronic Science and Technology of China, China
University of Minnesota, USA

Bacterial resistance: broad-spectrum resistance to bacterial blight. Rice bacterial blight is caused by Xanthomonas oryzae pv. oryzae and forms a threat to rice populations in Southeast Asia and West Africa.
(Li et al., 2024)
SDN1
CRISPR/Cas
Northwest A &
F University
Chinese Academy of Agricultural Sciences, China
Fungal resistance: improved sheath blight resistance. Sheath blight disease caused by Rhizoctonia solani AGI-1A and is one of the three major rice diseases. Sheath blight disease can cause severe yield losses.
(Feng et al., 2023)
SDN1
CRISPR/Cas
Yangzhou University, China
Significant resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo), sheath blight caused by Rhizoctonia solani and rice blast caused by Magnaporthe oryzae.
( Hu et al., 2021 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Jiangxi Agricultural University
Wuhan Towin Biotechnology Company Limited, China
Fast and accurate field screening and differentiation of four major Tobamoviruses infecting tomato and pepper. Tomatoviruses are the most important viruses infecting plants and cause huge economic losses to tomato and pepper crops globally.
( Zhao et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Inspection and Quarantine
China Agricultural University, China
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Cai et al., 2017)
SDN1
TALENs
Shanghai Jiao Tong University
Yunnan Academy of Agricultural Sciences, China
Enhanced resistance to Botrytis cinerea.
( Huang et al., 2022 )
SDN1
CRISPR/Cas
Beijing University of Agriculture
Capital Normal University, China
Resistance against leaf chewing insects: leaf-chewing insects cause yield loss and reduce seed quality in soybeans
(Zhang et al., 2022)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Huazhong Agricultural University
Henan Agricultural University, China
Detection assay for brassica yellows virus (BrYV) detection. BrYV is an economically important virus threatening cruciferous species.
( Xu et al., 2024 )
SDN1
CRISPR/Cas
Guizhou University
Guizhou Academy of Tobacco Sciences
Guizhou Academy of Agricultural Sciences, China
Fungal resistance: Enhanced resistance to the pathogen Sclerotinia sclerotiorum.
(Sun et al., 2018)
SDN1
CRISPR/Cas
Yangzhou University, China
Visual detection of Fusarium temperatum, the causal agent of maize stalk rot disease which reduces grain yield and threatens food safety and quality.
This simple detection platform allows high-throughput testing with potential for applications in field detection.
( Li et al., 2023 )
SDN1
CRISPR/Cas
Jilin University
Jilin Agricultural University
Shenzhen Campus of Sun Yat-sen University, China
Fungal resistance to Oidium neolycopersici, causing powdery mildew, one of the most important diseases limiting the production of wheat.
( Zhang et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Fungal resistance: More resistance against Bipolaris maydis, the causing agent of Southern corn leaf blight.
(Xie et al., 2024)
SDN1
CRISPR/Cas
Anhui Agricultural University, China
Fungal resistance: Decreased susceptibility against sheath blight disease caused by Rhizoctonia solani AGI-1A and is one of the three major rice diseases. Sheath blight disease can cause severe yield losses.
(Gao et al., 2018)
SDN1
CRISPR/Cas
Shenyang Agricultural University
Fuzhou University
Chinese Academy of Agricultural Sciences
Nanjing Agricultural University
Chinese Academy of Sciences
Wenzhou Agricultural Science Research Institute, China
Increased jasmonic acid (JA) accumulation after wounding and plant resistance to herbivorous insects.
( Sun et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University, China
Fungal resistance: broad-spectrum stress tolerance including Pseudoperonospora cubernsis (P. cubensis) resistance. P. cubensis is the causal agent of cucurbit downy mildew, responsible for devastating losses worldwide of cucumber, cantaloupe, pumpkin, watermelon and squash.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA
Viral resistance: Attenuated infection symptoms and reduced viral RNA accumulation, specific for the cucumber mosaic virus (CMV) or tobacco mosaic virus (TMV).
(Zhang et al., 2018)
SDN1
CRISPR/Cas
South China Agricultural University, China
University of Missouri, USA
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease.
(Li et al., 2020)
SDN1
CRISPR/Cas
College of Life Science and Technology &
College of Horticulture &
Forestry Sciences
Huazhong Agricultural University, China
Rapid detection system for Paracoccus marginatus, an insect that can cause huge crop losses.
( Chen et al., 2024 )
SDN1
CRISPR/Cas
Fujian Academy of Agricultural Sciences, China
UMR ISA, France
Viral resistance: partial resistance to Pepper veinal mottle virus (PVMV) isolate IC, with plants harboring weak symptoms and low virus loads at the systemic level.
(Moury et al., 2020)
SDN1
CRISPR/Cas
INRA, France
Université de Tunis El-Manar
Université de Carthage, Tunisia
Université Felix Houphouët-Boigny, Cote d’Ivoire
Institut de l’Environnement et de Recherches Agricoles, Burkina Faso
Fungal resistance: Improved resistance to Magnaporthe oryzae.
(Lijuan et al., 2024)
SDN1
CRISPR/Cas
China National Rice Research Institute
Agricultural College of Yangzhou University, China
Fungal resistance: enhanced resistance to Golovinomyces cichoracearum, which causes powdery mildew.
(Wang et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Linyi Tobacco Company
Tobacco Research Institute of Hubei Province
China Tobacco Hunan Industrial Co., China
Fungal resistance: increased resistance against the fungus Puccinia striiformis f. sp. tritici (Pst). Wheat stripe rust is caused by Pst and is one of the most destructive wheat diseases, resulting in significant losses to wheat production worldwide.
(He et al., 2022)
SDN1
CRISPR/Cas
Northwest A&
F University
Hebei Agri cultural University, China
Early on site detection of Phytophthora root rot, caused by Phytophthora sojae.
( Li et al., 2024 )
SDN1
CRISPR/Cas
Hainan University
Shanghai Jiao Tong University
China Agricultural University
Post-Entry Quarantine Center for Tropical Plant, China
Reduced aphid damage to improve crop resistance to aphids or other insects. Restrict aphid sucking on watermelon.
( Li et al., 2021 )
SDN1
CRISPR/Cas
Beijing Academy of Agricultural and Forestry Sciences, China
Broad-spectrum disease resistance without yield loss.
( Sha et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Chengdu Normal University
Jiangxi Academy of Agricultural Sciences
Anhui Agricultural University
BGI-Shenzhen
Northwest A&
F University
Shandong Academy of Agricultural Sciences, China
Université de Bordeaux, France
University of California
The Joint BioEnergy Institute, USA
University of Adelaide, Australia
Viral resistance: Resistance to Potato Virus Y (PVY), one of the most devastating viral pathogens causing substantial harvest losses.
(Zhan et al., 2019)

CRISPR/Cas
Hubei University
Huazhong Agricultural University, China
Max‐Planck‐Institut für Molekulare Pflanzenphysiologie, Germany
Sensitive on-site diagnosis of Rice bakanae disease, caused by F. fujikuroi, F. proliferatum, F. verticillioides, and F. andiyazi.
( Zhang et al., 2024 )
SDN1
CRISPR/Cas
Anhui Agricultural University, China
Fungal resistance: Decreased susceptibility against sheath blight disease caused by Rhizoctonia solani AGI-1A and is one of the three major rice diseases. Sheath blight disease can cause severe yield losses.
(Wang et al., 2024)
SDN1
CRISPR/Cas
Shenyang Agricultural University
Liaoning Academy of Agricultural Sciences, China
Significantly enhanced resistance to V. dahliae, and furthermore also to Verticillium albo-atrum and Fusarium oxysporum f. sp. lycopersici (Fol), despite severe growth defects.
( Hanika et al., 2021 )
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Fast and accurate field screening and differentiation of four major Tobamoviruses infecting tomato and pepper. Tomatoviruses are the most important viruses infecting plants and cause huge economic losses to tomato and pepper crops globally.
( Zhao et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Inspection and Quarantine
China Agricultural University, China
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Li et al., 2013)
SDN1
TALENs
Iowa State University, USA
Guangxi University, China
Enhanced blast disease resistance
( Liao et al., 2022 )
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
Viral resistance: Resistance against Grapevine leafroll-associated virus 3 (GLRaV-3), which is one of the causal agents of grapevine leafroll disease (GLD). GLD severely impacts grapevine production.
(Jiao et al., 2022)

CRISPR/Cas
Northwest A&
F University, China
Fungal resistance: enhanced resistance against rust caused by Puccinia striiformis f. sp. tritici and powdery mildew caused by Blumeria graminis f. sp. tritici., while also increasing yield.
(Liu et al., 2024)
SDN1
CRISPR/Cas
Southwest University
Yangtze University, China
University of Cologne, Germany
University of Maryland
Fungal resistance: enhanced resistance to Phytophthora infestans. Phytophthora infestans causes late blight disease, which is severely damaging to the global tomato industry
(Hong et al., 2021)
SDN1
CRISPR/Cas
Dalian University of Technology
Beijing Academy of Agriculture &
Forestry Sciences
Shenyang Agricultural University/Key Laboratory of Protected Horticulture, China
Fungal resistance: effective reduction of susceptibility against downy mildew by increasing salicylic acid levels. The pathogen can devastate individual vineyards and in some cases also affect production from entire regions.
(Giacomelli et al., 2023)
SDN1
CRISPR/Cas
Research and Innovation Centre
Fondazione Edmund Mach, Italy
Enza Zaden
Hudson River Biotechnology, The Netherlands
Fungal resistance to Oidium neolycopersici, causing powdery mildew, one of the most important diseases limiting the production of wheat.
( Wang et al., 2014 )
SDN1
TALENs
Chinese Academy of Sciences, China
Fungal resistance: Enhanced resistance against Verticillium and Fusarium wilt, which threatens the cotton production world wide.
(Zhao et al., 2024)
SDN1
CRISPR/Cas
China Agricultural University
Xinjiang Academy of Agricultural Sciences, China
Viral resistance: improved resistance against the Southern rice black-streaked dwarf virus, which can cause significant crop losses.
(Zhang et al., 2024)
SDN1
CRISPR/Cas
Shenyang Agricultural University
Ningbo University, China
Fungal resistance: contribute to Sclerotinia sclerotiorum resistance.
(Zhang et al., 2022)
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Fungal resistance: Improved resistance against Phytophtora without affecting potato growth and development.
(Bi et al., 2023)
SDN1
CRISPR/Cas
China Agricultural University
South China Agricultural University
Shanghai Normal University
Nanjing Agricultural University, China
Viral resistance: highly resistant to viral infection with beet severe curly top virus (BSCTV), a geminivirus that can cause serious damage to many crop plants.
(Ji et al., 2015)
SDN1
CRISPR/Cas
University of Chinese Academy of Sciences, China
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease in Southeast Asia and West Africa.
(Wei et al., 2021)
SDN2
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Agricultural Research Center, Egypt
Bacterial resistance: Resistance against African Xanthomonas oryzae isolates, causing agents of bacterial blight. Bacterial blight threatens rice populations in Asia and West Africa.
(Li et al., 2024)

BE
University of Missouri
Donald Danforth Plant Science Center, USA
Department of Nanjing Agricultural University, China
Oilseed rape mutant with non-abscising floral organs. Clerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum is a detrimental fungal disease for oilseed rape. Petal infection is crucial to the prevalence of SSR in oilseed rape. Oilseed rape varieties with abscission-defective floral organs were predicted to be less susceptible to Sclerotinia infection and to have a longer flowering period to enhance tourism income.
( Wu et al., 2022 )
SDN1
CRISPR/Cas
Yangzhou University, China
Fungal resistance: increased resistance against powdery mildew, a destructive disease that threatens cucumber production globally.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California Davis, USA
Wageningen University &
Research, The Netherlands
Oomycete resistance: increased resistance against soybean root rot disease caused by Phytophthora sojae.
(Liu et al., 2023)
SDN1
CRISPR/Cas
Nanjing Agricultural University, China
Viral resistance: increased resistance against wheat yellow mosaic virus (WYMV) without yield penalty. WYMV results in severe yield losses in hexaploid wheat.
(Kan et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences (CAAS)
Agricultural Sciences Institute in Jiangsu Lixiahe Area, China
Nematode resistance: Enhanced resistance to more virulent soybean cyst nematode (SCN). SCN is the most devastating post to soybean crop yields in the US.
(Wang et al., 2024)
SDN1
CRISPR/Cas
Henan Agricultural University
University of South Carolina, China
Enhanced resistance to insects, no serotonin production and higher salicylic acid levels. Rice brown planthopper (BPH; Nilaparvata lugens Stål) and striped stem borer (SSB; Chilo suppressalis) are the two most serious pests in rice production.
( Lu et al., 2018 )
SDN1
CRISPR/Cas
Zhejiang University
Jiaxing Academy of Agricultural Sciences
Wuxi Hupper Bioseed Ltd.
Hubei Collaborative Innovation Center for Grain Industry, China
Newcastle University, UK
Fungal resistance: enhanced resistance against powdery mildew disease.
(Xu et al., 2023)
SDN1
CRISPR/Cas
Kyungpook National University
Rural Development Administration
Sunchon National University, South Korea
Lingnan Normal University, China
Bacterial resistance: Xanthomonas citri, causing citrus canker, one of the most serious diseases affecting the global citrus industry. Citrus is the most produced fruit in the world.
(Peng et al., 2017)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences and National Center for Citrus Variety Improvement
Southwest University, China
Insect-resistant plant.
( Wang et al., 2024 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Huanghuai University
Xinjiang Academy of Agricultural Sciences
School of Life Sciences, China
Fungal resistance: Decreased susceptibility against sheath blight disease caused by Rhizoctonia solani AGI-1A and is one of the three major rice diseases. Sheath blight disease can cause severe yield losses.
(Chen et al., 2024)
SDN1
CRISPR/Cas
Chongqing Three Gorges University
Shenyang Agricultural University
Nankai University
Northeast Forestry University, China
High level of powdery mildew resistance while maintaining normal crop
growth and yields.
( Li et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Sensitive detection of two fungal pathogens (Diaporthe aspalathi and Diaporthe caulivora) that cause soybean stem canker. The method requires minimal equipment as well as training and shows potential for on-site screening.
( Sun et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Inspection and Quarantine
Shenyang Agricultural University
Huangpu Customs Technology Center
Technical Center of Hangzhou Customs
Dalian University, China
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Zhou et al., 2018)
SDN1
CRISPR/Cas
National Center for Plant Gene Research
Sichuan Agricultural University, China
Viral resistance: resistance to potato virus Y (PVY), one of the most economically and scientifically important plant viruses, causing damaging diseases of cultivated tobacco around the world.
(Ruyi et al., 2021)
SDN1
CRISPR/Cas
Mudanjiang Teachers College
Jilin Normal University
Mudanjiang Tobacco Research Institute, China
Confered resistance to ear rot caused by Fusarium verticillioides.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
National Key Facility for Crop Gene Resources and Genetic Improvement
Hainan Yazhou Bay Seed Lab, China
Viral resistance: Increased resistance to a potyvirus sugarcane mosaic virus, which causes dwarf mosaic disease in maize, sugarcane and sorghum.
(Xie et al., 2024)
SDN1
CRISPR/Cas
China Agricultural University
Longping Agriculture Science Co. Ltd.
Chinese Academy of Sciences
Yunnan Agricultural University, China
Viral resistance: Enhanced resistance to sweet potato virus disease (SPVD). SPVD is caused by the co-infection of sweet potato chlorotic stunt virus (SPCSV) and sweet potato feathery mottle virus.
(Yu et al., 2021)
SDN1
CRISPR/Cas
Jiangsu Normal University
Jiangsu Academy of Agricultural Sciences
Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, China
Fungal and bacterial resistance: improved resistance against Magnaporthe oryzae–caused rice blast and bacterial leaf streak caused by Xanthomonas oryzae. Rice blast and bacterial leaf streak are deadly diseases that can lead to serious damage.
(Yang et al., 2023)
SDN1
CRISPR/Cas
Guangxi University
South China Agricultural University
Guangxi Lvhai
Seed Co., China
Fungal resistance: Fusarium oxysporum f.sp. niveum (FON), one of the most devastaging diseases affecting watermelons. FON progresses along xylem vessels, causing the hollow and dried-out stems.
(Zhang et al., 2020)
SDN1
CRISPR/Cas
Jiangsu Academy of Agricultural Sciences
Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, China
Rapid detection of Bacillus cereus, which is a foodborne pathogen that can cause different diseases through production of enterotoxins.
( Li et al., 2024 )
SDN1
CRISPR/Cas
China Agricultural University
Guangzhou Wanlian Biotechnology Co., China
Viral resistance: reduced potato spindle tuber viroid (PSTVd) accumulation and alleviated disease symptoms. PSTVd can threaten tomato production.
(Wei Khoo et al., 2024)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Southwest University
Heilongjiang Academy of Agricultural Sciences
China Agricultural University
Inner Mongolia Zhongjia Agricultural Biotechnology Co. Ltd., China
Viral resistance: Reduced viral load and symptoms after bean yellow dwarf virus (BeYDV) infection.
(Baltes et al., 2015)
SDN1
CRISPR/Cas
University of Minnesota
The Ohio State University, USA
Institute of Biophysics ASCR, Czech Republic
Fungal resistance: Reduced susceptibility to necrotrophic fungi. Necrotrophic fungi, such as Botrytis cinerea and Alternaria solani, cause severe damage in tomato production.
(Ramirez Gaona et al., 2023)
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Takii &
Company Limited, Japan
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Xie et al., 2017)
SDN1
TALENs
Chinese Academy of Sciences, China
Rapid and on-site detection of the mycotoxin zearalenone.
( Pei et al., 2024 )
SDN1
CRISPR/Cas
Shaanxi University of Science and Technology
Anhui Agricultural University
China National Center for Food Safety Risk Assessment, China
Queen'
s University Belfast, UK
Disease-resistant and fertile varieties.
( Li et al., 2022 )
SDN1
CRISPR/Cas
Hubei Academy of Agricultural Sciences
Huazhong Agricultural University

Hubei Hongshan Laborator, China
Viral resistance: highly efficient resistance to a broad spectrum of geminiviruses. Geminiviruses severely damage economically important crops worldwide.
(Li et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Guangxi University
Zhejiang University, China
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease in Southeast Asia and West Africa. Bacteria enter the host and produce a toxin, which prevents the production of chlorophyl.
(Han et al., 2020)
SDN1
TALENs
Chinese Academy of Sciences
Hainan University, China
Fungal resistance: Improved resistance to false smut, caused by Ustilaginoidea virens. False smut is one of the major fungal diseases of rice.
(Liang et al., 2018)
SDN2
CRISPR/Cas
Northwest A&
F University
Fujian Agriculture and Forestry University, China
Fungal resistance: increased resistance to southern leaf blight (SLB), caused by the necrotrophic fungal pathogen Cochliobolus heterostrophus (anamorph Bipolaris maydis). SLB is a major foliar disease which causes significant yield losses in maize worldwide.
(Chen et al., 2023)
SDN1
CRISPR/Cas
Northwest A&
F University, China
Corteva AgriscienceTM
USDA-ARS
North Carolina State University, USA
Fungal resistance: Reduced susceptibility to Verticillium longisporum, fungal pathogen that causes stem striping in Brassica napus and leads to huge yield losses.
(Ye et al., 2024)
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Institut für Zuckerrübenforschung
Hohenlieth-Hof, NPZ Innovation GmbH, Germany
Aswan University, Egypt
Fujian Agriculture and Forestry University, China
Bacterial resistance: Enhanced resistance to both blast and bacterial blight diseases, two major diseases having devastating impact on the yield of rice in most rice-growing countries.
(Zhou et al., 2021)
SDN1
CRISPR/Cas
South China Agricultural University
Huazhong Agricultural University
Yuan Longping High-Tech Agriculture Co. Ltd
Hunan Hybrid Rice Research Center
Yuan Longping High-Tech Agriculture Co. Ltd, China
Viral resistance: Resistance against potato leaf roll virus, potato virus Y, potato virus X and potato virus S, which have been recognized as the major potato viruses.
(Zhan et al., 2023)
SDN1
CRISPR/Cas
Hubei University
Huazhong Agricultural University
Chinese Academy of Agricultural Sciences, China
Bacterial resistance: enhanced resistance to Xanthomonas citri, causing citrus canker, one of the most serious diseases affecting the global citrus industry.
(Long et al., 2021)
SDN1
CRISPR/Cas
Southwest University/Chinese Academy of Agricultural Sciences, China
Fungal resistance: Enhanced resistance against powdery mildew, caused by Oidium neolycopersici, which is a major concern for the productivity of tomato plants.
(Li et al., 2024)
SDN1
CRISPR/Cas
University of Torino, Italy
Wageningen University &
Research, The Netherlands
Shanxi Agricultural University, China
Fungal resistance: improved sheath blight resistance. Sheath blight disease caused by Rhizoctonia solani AGI-1A and is one of the three major rice diseases. Sheath blight disease can cause severe yield losses.
(Xie et al., 2023)
SDN1
CRISPR/Cas
Agricultural College of Yangzhou University
Yangzhou University, China
Increased resistance to drought stress by enhancing antioxidant capacity and defence system.
( Gao et al., 2022 )
SDN1
CRISPR/Cas
Henan Agricultural University
China Tobacco Sichuan Industrial Co., China
Rapid detection of toxigenic Fusarium verticillioides, a phytopathogenic fungus that causes Fusarium ear and stalk rot and poses a threat to maize yields. This accurate and portable detection equipment has great potential for detection of the pathogen, even in areas lacking proper lab equipment.
( Liang et al., 2023 )
SDN1
CRISPR/Cas
Institute of Food Science and Technology
North Minzu University
School of Food Science and Engineering, China
Gembloux Agro-Bio Tech, Belgium
Fungal resistance: increased resistance to Botrytis cinerea.
(Wang et al., 2018)
SDN1
CRISPR/Cas
Northwest A&
F University and Ministry of Agriculture, China
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Zeng et al., 2020)
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Enhanced resistance to powdery mildew.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences Institute of Tobacco Research, China
Sensitive and specific visual detection method for Acidovorax citrulli, an important seed-borne disease of the cucurbits.
( Wang et al., 2024 )
SDN1
CRISPR/Cas
Fuyang Normal University
Anhui Jianzhu University
Southern Subtropicals Grops Research Institute, China
Visual detection of Alternaria solani, the causal agent of early blight in potato, which poses a persistant threat to potato production worldwide. The platform is specific, sensitive and suitable for high-throughput detection.
( Guo et al., 2023 )
SDN1
CRISPR/Cas
Jilin University
Jilin Agricultural University
Shenzhen Campus of Sun Yat-sen University, China
Fungal resistance: Reduced susceptibility to the powdery mildew pathogen (Oidium neolycopersici), a world-wide disease threatening the production of greenhouse- and field-grown tomatoes.
(Santillán Martínez et al., 2020)
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Insect resistance: Apolygus lucorum are less attracted to the plant.
(Teng et al., 2024)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Yunnan University
Shanxi Agricultural University
National Plant Protection Scientific Observation and Experiment Station
Biocentury Transgene (China) Co. Ltd., China
Viral resistance: enhanced resistance against wheat dwarf virus, which is a causal agent of wheat viral disease and can significantly impact wheat production worldwide.
(Yuan et al., 2024)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Northwest A&
F University, China

Norwegian Institute of Bioeconomy Research, Norway
Fungal resistance: Increased resistance to Phytophthora sojae, a pathogen severely impairing soybean production.
(Yu et al., 2021)
SDN1
CRISPR/Cas
Northeast Agricultural University
Chinese Academy of Agricultural Sciences
Shanghai Jiao Tong University
Jilin Academy of Agricultural Science
Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences
Heilongjiang Academy of Agricultural Sciences, China
Fungal resistance: broad-spectrum resistance to rice pathogens without adverse effects in terms of growth and yield.
(Chen et al., 2023)
SDN1
CRISPR/Cas
Anhui Agricultural University
Huazhong Agricultural University, China
Fungal resistance: enhanced resistance to Magnaporthe oryzae, causing rice blast, one of the most destructive diseases affecting rice worldwide.
(Wang et al., 2016)
SDN1
CRISPR/Cas
Chinese Academy of Agriculture, China