Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 70 results

Traits related to industrial utilization

Male sterility.
( Shen et al., 2024 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Hubei Hongshan Laboratory, China
Male sterility for hybrid seed production reduces costs and ensures high varietal purity.
( Du et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Beijing Academy of Agriculture and Forestry Sciences
Zhejiang Agricultural and Forestry University, China
Enhanced haploid induction. Double haploid breeding based on in vivo haploid induction has been extensively used in maize breeding. The production of haploids depends on haploid inducers.
( Zhong et al., 2019 )
SDN1
CRISPR/Cas
China Agricultural University, China
Significantly longer seed dormancy period, may result in reduced pre-harvest sprouting of grains on spikes.
( Abe et al., 2019 )
SDN1
CRISPR/Cas
Institute of Crop Science
Okayama University
Yokohama City University
Institute of Agrobiological Sciences
Obihiro University of Agriculture and Veterinary Medicine, Japan
Fertility restoration of cytoplasmic male sterility.
( Suketomo et al., 2020 )
SDN1
CRISPR/Cas
Tohoku University, Japan
Control photoperiodic flowering to allow adaptation of cultivars. Flowering time is a critical characteristic to determine the geographic distribution and regional adaptability of soybean.
( Wang et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Production of herbicide-sensitive strain to prevent volunteer infestation. Volunteer rice grows when cultivated rice seed fall into fields, overwinter and spontaneously germinate the next spring.
( Komatsu et al., 2020 )

BE
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization (NARO)
Graduate School of Science
Technology and Innovation, Japan
Reversible complete male sterility. Very precise hormone mediated control of male fertility transition showed great potential for hybrid seed production in Brassica species crops.
( Cheng et al., 2023 )
SDN1
CRISPR/Cas
Ministry of Agriculture and Rural Affairs
Henan Normal University, China
Restoring cytoplasmic sterility.
( Kazama et al., 2019 )
SDN2
TALENs
Tohoku University
Tamagawa University
The University of Tokyo
National Institute of Genetics
Tokyo Institute of Technology
Tamagawa University
Japan Science and Technology Agency, Japan
Cytoplasmic male sterility.
( Chang et al., 2022 )
SDN1
CRISPR/Cas
Northwest Institute of Plateau Biology Chinese Academy of Sciences, China
Confer male and female sterility to prevent the risk of trasgene flow from transgenic plants to their wild relatives.
( Shinoyama et al., 2020 )
SDN1
TALENs
Fukui Agricultural Experiment Station
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization (NARO)
Japan Science and Technology Agency (JST)
Yokohama City University, Japan
Altai State University, Russia
Late flowering time.
( Li et al., 2022 )
SDN1
CRISPR/Cas
Zhejiang University
China Zhejiang Zhengjingyuan Pharmacy Chain Co., Ltd. &
Hangzhou Zhengcaiyuan Pharmaceutical Co., China
New red-grained and pre-harvest sprouting (PHS)-resistant wheat varieties with elite agronomic traits. PHS reduces yield and grain quality, additionally the red pigment of the grain coat contains proanthocyanidins, which have antioxidant activity and thus health-promoting properties.
( Zhu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Fujian Academy of Agricultural Sciences
Henan University
Shenzhen Research Institute of Henan university
Taiyuan University of Technology
Southern University of Science and Technology, China
University of Edinburgh, UK
Induction of haploid plants and a reduced seed set for rice breeding.
( Yao et al., 2018 )
SDN2
CRISPR/Cas
ZhongGuanCun Life Science Park, China
Syngenta India Limited
Technology Centre
Medchal Mandal, India
Syngenta Crop Protection
LLC
Research Triangle Park, USA
Gynoecious phenotype: only female flowers. Advantageous trait for production of hybrid seed by bees under spatial isolation, because it avoids hand emasculation and hand pollination.
(Zhang et al., 2019)
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
Chinese Academy of Agricultural Engineering Planning and Design, China
Pollen Self-Elimination, which prevents pollen transgene dispersal.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences (CAAS)
Northwest A&
F University
Hainan Yazhou Bay Seed Lab
Henan Jinyuan Seed Industry Co., China
International Maize and Wheat Improvement Center (CIMMYT), Mexico
Male sterility.
( Tu et al., 2024 )
SDN1
CRISPR/Cas
Zhejiang University
Jiaxing Academy of Agricultural Sciences, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Li et al., 2020 )
SDN1
CRISPR/Cas
Peking University Institute of Advanced Agricultural Sciences
Peking University
Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production for monoclinous crops reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Niu et al., 2022 )

CRISPR/Cas
Sichuan Agricultural University
Chengdu Agricultural College
Sichuan Institute of Atomic Energy, China
Enhanced genetic recombination frequency to increase genetic diversity and disrupting genetic interference.
( Liu et al., 2021 )
SDN1
CRISPR/Cas
China National Rice Research Institute
Chinese Academy of Sciences
Chinese Academy of Agricultural Sciences, China
Generation of a new thermo-sensitive genic male sterile rice line for hybrid breeding of indica rice.
( Barman et al., 2019 )
SDN1
CRISPR/Cas
China National Rice Research Institute, China
Bangladesh Rice Research Institute, Bangladesh
Generation of male sterility lines. Heterosis, the breeding result in which heterozygous hybrid progeny are superior to both homozygous parents, depends on the selection and application of male-sterile lines (MSL). Using MSL can reduce the production cost of hybrid seeds and improve its quality.
( Chen et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
University of Chinese Academy of Sciences
Jilin Agricultural University
Jilin Academy of Agricultural Sciences, China
Prolonged basic vegetative growth periods for flexible cropping systems in southern China, as well as in other low-latitude regions. Most of the mid-latitude varities were sensitive to temperature or photoperiod, resulting in low grain yield when cultivated in low-latitude regions.
( Wu et al., 2020 )
SDN1
CRISPR/Cas
Fujian Agricultural and Forestry University
Fujian Academy of Agricultural Sciences
Minjiang University, China
Early maturity of rice varieties. Rice is a tropical short-day plant. The northward cultivation in China is accompanied with daylength extension and temperature decrease, which are unfavorable for rice, to complete flowering and seed setting.
( Li et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Jiangsu Academy of Agricultural Sciences, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production for monoclinous crops reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas. Complete abolition of pollen development.
( An et al., 2023 )
SDN1
CRISPR/Cas
University of Science and Technology Beijing
Yili Normal University
Zhongzhi International Institute of Agricultural Biosciences
Beijing Solidwill Sci-Tech Co. Ltd., China
Self-incompatibility to prevent inbreeding in hermaphrodite angiosperms via the rejection of self-pollen.
( Dou et al., 2021 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Establishment of maternal haploid induction. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Zhong et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Wageningen University and Research, The Netherlands
Regulation of flowering time and drought tolerance: flowered 9.6 and 5.8 days earlier.
(Gu et al., 2022)
SDN1
CRISPR/Cas
Yangzhou University, China
Development of commercial thermosensitive genic male sterile lines to accelerate hybrid rice breeding.
( Zhou et al., 2016 )
SDN1
CRISPR/Cas
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources
Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions
South China Agricultural University
China National Hybrid Rice R&
D Center, China
Generation of male sterile (MS) lines. MS is a useful tool to harness hybrid vigor for hybrid seed production.
( Chen et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
China Agricultural University, China
Establishment of maternal haploid induction. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Tian et al., 2023 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement, China
Dwarf plants that retain favourable fruit traits.
( Nagamine et al., 2024 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan
Generating male sterility lines (MLS). Using MLS in hybrid seed production for monoclinous crops reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Li et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Early heading: timing of heading is crucial for the reproduction and the geographical expansion of cultivation of rice.
(Sun et al., 2022)
SDN1
CRISPR/Cas
China National Rice Research Institute
Shanghai Academy of Agricultural Sciences
Northern Center of China National Rice Research Institute
Xuzhou Institute of Agricultural Sciences, China
Male sterility.
( Zhang et al., 2021 )
SDN1
CRISPR/Cas
Northwest A&
F University, China
Complete male sterility. The generation, restoration, and maintenance of male sterile lines are the key issues for large-scale commercial hybrid seed production.
( Li et al., 2020 )
SDN1
CRISPR/Cas
Peking University Institute of Advanced Agricultural Sciences
School of Advanced Agriculture Sciences and School of Life Sciences
Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, China
Wine fermentation: minimize ethyl carbamate (EC) accumulation. EC is a potential carcinogen to humans. EC is mainly produced through the reaction between urea and ethanol during the Chinese wine brewing process.
(Wu et al., 2020)
SDN2
CRISPR/Cas
Jiangnan University
Zhejiang Shuren University, China
Enhanced biomass saccharification by altered lignin biosynthesis. The intrinsic recalcitrance of lignocellulose residues requires high energy input for bioethanol production.
( Zhang et al., 2020 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Hubei University of Arts &
Science
Guangxi University, China
Manipulation of self-incompatibility.
( Zhang et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Aarhus University
DLF Seeds A/S, Denmark
Modified wood composition with traits desirable for fiber pulping and lower carbon emissions. The edited wood could bring efficiencies, bioeconomic opportunities and environmental benefits.
( Sulis et al., 2023 )
SDN1
CRISPR/Cas
North Carolina State University
University of Illinois at Urbana-Champaign, USA
Beihua University
Northeast Forestry University, China
Fertility recovery of male sterility in wheat lines with excelling agronomic and economic traits for breeding purpose, as male-sterile plants cannot be used for selection.
( Tang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
China Agricultural University, China
Establishment of maternal haploid induction. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Zhong et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Wageningen University and Research, The Netherlands
Guidance for creating male-sterile lines to facilitate hybrid cotton production. Exploit heterosis for improvement of cotton.
( Ma et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Huanggang Normal University
Xinjiang Academy of Agricultural Sciences
Institute of Cotton Research of Chinese Academy of Agricultural Sciences, China
Domestication: Conferred domesticated phenotypes yet retained parental disease resistance (predominately Xanthomonas perforans), and salt tolerance.
(Li et al., 2018)
SDN1
CRISPR/Cas
University of Chinese Academy of Sciences, China
Induction of haploid plants for the development of good inbred lines for efficient and fast breeding.
( Liu et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Generating genic male sterility lines (GMS). GMS can promote heterosis in rapeseed. Compared with other approaches, GMS brings about nearly complete male sterility to a hybrid breeding program.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Northwest A&
F University
Hybrid Rapeseed Research Centre of Shaanxi Province, China
Confer male and female sterility to prevent the risk of trasgene flow from transgenic plants to their wild relatives.
( Wu et al., 2024 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
University of Chinese Academy of Sciences
Jilin Agricultural University
Zhejiang Lab, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production for monoclinous crops reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Xie et al., 2018 )
SDN1
CRISPR/Cas
University of Science and Technology
Beijing, China
Beijing Solidwill Sci-Tech Co. Ltd, China
Early heading: in regions with short growing seasons, early maturing varieties to escape frost damage are required.
(Sohail et al., 2022)
SDN1
CRISPR/Cas
China National Rice Research Institute
Northern Center of China National Rice Research Institute
Zhejiang A&
F University, China
Mir Chakar Khan Rind University
Agriculture Research System Khyber, Pakistan
Ministry of Agriculture, Bangladesh
Agriculture Research Center, Egypt
Accelerated abscission. Plant organ abscission is a process important for development and reproductive success,
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Shenyang Agricultural University
Key Laboratory of Protected Horticulture of Ministry of Education, China
University of California at Davis
Crops Pathology and Genetic Research Unit, USA
Generation of male-sterile hexaploid wheat lines for use in hybrid seed production. The development and adoption of hybrid seed technology have led to dramatic increases in agricultural productivity.
( Okada et al., 2019 )
SDN1
CRISPR/Cas
The University of Adelaide, Australia
Huaiyin Normal University, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Bao et al., 2022 )
SDN1
CRISPR/Cas
Yunnan Agricultural University
Yunnan Academy of Agriculture Sciences, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production for monoclinous crops reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Li et al., 2020 )
SDN1
CRISPR/Cas
Peking University Institute of Advanced Agricultural Sciences
School of Advanced Agriculture Sciences and School of Life Sciences
Peking University
Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement,China
Rescued male fertility. Hybrids between divergent populations commonly show hybrid sterility; this reproductive barrier hinders hybrid breeding of the japonica and indica rice subspecies.
( Shen et al., 2017 )
SDN1
CRISPR/Cas
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources
Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions
South China Agricultural University, China
Enhanced biomass saccharification by remodelling of cell wall composition.
( Dang et al., 2023 )
SDN1
CRISPR/Cas
Shenyang Agricultural University/Key Laboratory of Northern geng Super Rice Breeding, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Liu et al., 2021 )
SDN1
CRISPR/Cas
Northwest A&
F University
Xi’an Jinpeng Seedlings Co. Ltd.
Hybrid Rapeseed Research Center of Shaanxi Province, China
Enabled clonal reproduction trough seeds. Application of the method may enable self-propagation of a broad range of elite F1 hybrid crops.
( Wang et al., 2019 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Université Paris-Saclay, France
Thermosensitive genic male sterile lines with high blast resistance and fragrance quality. Resources for hybrid rice breeding.
( Liang et al., 2022 )
SDN1
CRISPR/Cas
China National Rice Research Institute, China
Male sterility and decreased total fatty acid content in the anther.
( Basnet et al., 2019 )
SDN1
CRISPR/Cas
Zhejiang University
Yangtze University, China
Generating male sterility lines (MSL). MS is the absence or non-function of pollen grain in plant or incapability of plants to produce or release functional pollen grains. Using MS lines eliminates the process of mechanical emasculation in hybrid seed production.
( Zou et al., 2017 )
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
Rescued hybrid female fertility. Hybrids between divergent populations commonly show hybrid sterility; this reproductive barrier hinders hybrid breeding of the japonica and indica rice subspecies.
( Guo et al., 2023 )
SDN1
CRISPR/Cas
Ministry of Agriculture and Rural Affairs
Guangdong Key Laboratory of New Technology in Rice Breeding
Guangdong Academy of Agricultural Sciences
South China Agricultural University, China
Improved pollen viability.
( Lv et al., 2024 )
SDN1
CRISPR/Cas
Zhejiang Academy of Agricultural Sciences
Mianyang Normal University
South China Agricultural University, China
Manipulation of flowering time to develop cultivars with desired maturity dates. Stabilization of flowering time and period supports efficient mechanised harvesting.
( Ahmar et al., 2021 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production for monoclinous crops reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Fang et al., 2022 )
SDN1
CRISPR/Cas
University of Science and Technology Beijing
Beijing Solidwill Sci-Tech Co. Ltd., China
Confer male sterility for hybrid seed production. Male sterility is an important trait, especially for self-pollinated crops such as rice.
( Ma et al., 2019 )
SDN1
CRISPR/Cas
South China Agricultural University, China
Haploid induction.
( Li et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University
Longping Agriculture Science Co. Ltd., China
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Zhang et al., 2023 )
SDN1
CRISPR/Cas
Shandong Academy of Agricultural Sciences
Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley
National Engineering Laboratory for Wheat and Maize
Chinese Academy of Agricultural Sciences, China
Creation of photoperiod-/thermo-sensitive genic male-sterile (P/TGMS) lines, important for commercial rice breeding. P/TGMS rice lines are useful germplasm resources for two-line hybrid breeding.
( Lan et al., 2019 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Albino phenotype, self-incompatibility and male sterility.
( Ma et al., 2019 )
SDN1
CRISPR/Cas
Southwest University, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high seed purity during hybrid seed production.
( Zhou et al., 2023 )
SDN1
CRISPR/Cas
Beijing Academy of Agriculture and Forestry Sciences
Chinese Academy of Sciences
China Agricultural University, China