Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Displaying 86 results

Traits related to biotic stress tolerance

Fungal and bacterial resistance: Increased resistance to late blight pathogen Phytophthora infestans, common scab, and the early blight pathogen Alternaria solani.
(Karlsson et al., 2024)
SDN1
CRISPR/Cas
University of Agricultural Sciences, Sweden
Fungal resistance: increased resistance to Phytophthora infestans, causing late blight disease, the most serious disease of potato crops worldwide. The pathogen can infect the leaves, stems and tubers of potato plants. An unprotected field can be completely destroyed in several days.
(Kieu et al., 2021)
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
University of Copenhagen, Denmark
Enhanced resistance to insects, no serotonin production and higher salicylic acid levels. Rice brown planthopper (BPH; Nilaparvata lugens Stål) and striped stem borer (SSB; Chilo suppressalis) are the two most serious pests in rice production.
( Lu et al., 2018 )
SDN1
CRISPR/Cas
Zhejiang University
Jiaxing Academy of Agricultural Sciences
Wuxi Hupper Bioseed Ltd.
Hubei Collaborative Innovation Center for Grain Industry, China
Newcastle University, UK
Herbicide resistance: pds (phytoene desaturase), ALS (acetolactate synthase), and EPSPS (5-Enolpyruvylshikimate-3-phosphate synthase)
(Yang et al., 2022)
SDN1
CRISPR/Cas
Chonnam National University, South Korea
Fungal and bacterial resistance: increased resistance towards the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) and fungal pathogen Alternaria brassicicola.
(Yung Cha et al., 2023)
SDN1
CRISPR/Cas
Gyeongsang National University, South Korea
Fungal resistance: improved resistance to necrotrophic fungus Botrytis cinerea.
(Jeon et al., 2020)
SDN1
CRISPR/Cas
Stanford University, UK
L’Oreal, France
Howard Hughes Medical Institute, USA
Rapid and on-site detection of the mycotoxin zearalenone.
( Pei et al., 2024 )
SDN1
CRISPR/Cas
Shaanxi University of Science and Technology
Anhui Agricultural University
China National Center for Food Safety Risk Assessment, China
Queen'
s University Belfast, UK
Bacterial resistance: Enhanced resistance against hemibiotrophic pathogens M. oryzae and Xanthomonas oryzae pv. oryzae (but increased susceptibility to Cochliobolus miyabeanus)
(Kim et al., 2022)
SDN1
CRISPR/Cas
Seoul National University
Kyung Hee University, South Korea
Pennsylvania State University, USA
Fungal resistance: resistance to Oidium neolycopersici, causing powdery mildew.
(Nekrasov et al., 2017)
SDN1
CRISPR/Cas
Max Planck Institute for Developmental Biology, Germany
Norwich Research Park, UK
Viral resistance: resistance to pepper mottle virus (PepMoV), causing considerable damage to crop plants.
(Yoon et al., 2020)
SDN1
CRISPR/Cas
Seoul National University
National Institute of Horticultural and Herbal Science, South Korea
Fungal resistance: increased resistance to Erysiphe necator, causing powdery mildew in grape cultivar. The pathogen infects all green tissues and berries, leading to dramatic losses in yield and berry quality.
(Malnoy et al., 2016)
SDN1
CRISPR/Cas
Fondazione Edmund Mach, Italy
ToolGen Inc.
Institute for Basic Science
Seoul National University, South Korea
Viral resistance: enhanced Potato virus Y (PVY) resistance. PVY infection can result in up to 70% yield loss globally.
(Le et al., 2022)
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology, Vietnam
University of Edinburgh, UK
Viral and fungal resistance: Tomato yellow leaf curl virus (TYLCV) and powdery mildew (Oidium neolycopersici), diseases which reduce tomato crop yields and cause substantial economic losses each year.
(Pramanik et al., 2021)
SDN1
CRISPR/Cas
Gyeongsang National University
Pusan National University
R&
D Center, Bunongseed Co., South Korea
Fungal resistance: enhanced resistance against powdery mildew disease.
(Xu et al., 2023)
SDN1
CRISPR/Cas
Kyungpook National University
Rural Development Administration
Sunchon National University, South Korea
Lingnan Normal University, China
Bacterial resistance: Increased resistance to Erwinia amylovora, causing fire blight disease that threatens the apple and a wide range of ornamental and commercial Rosaceae host plants.
(Malnoy et al., 2016)
SDN1
CRISPR/Cas
Fondazione Edmund Mach, Italy
ToolGen Inc.
Institute for Basic Science
Seoul National University, South Korea
Viral resistance: increased resistance to turnip mosaic virus (TuMV).
(Lee et al., 2023)
SDN1
CRISPR/Cas
Rural Development Administration
Advanced Institute for Science and Technology, South Korea
North Carolina State University, USA
Mutants were compromised in infectivity of Phytophthora palmivora, a destructive oomycete plant pathogen with a wide host range
( Pettongkhao et al., 2022 )
SDN1
CRISPR/Cas
Prince of Songkla University, Thailand
University of Hawaii at Manoa
East-West Center, USA
Sainsbury Laboratory Cambridge University (SLCU), UK
Bacterial resistance: enhanced resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Kim et al., 2019)
SDN1
CRISPR/Cas
Sejong University, South Korea

Traits related to abiotic stress tolerance

Increased drought tolerance. Plants showed lower ion leakage and higher proline content upon abiotic stress.
( Kim et al., 2023 )
SDN1
CRISPR/Cas
Chungbuk National University
Hankyong National University

Institute of Korean Prehistory, South Korea
Drought tolerance by modulating lignin accumulation in roots.
( Bang et al, 2021 )
SDN1
CRISPR/Cas
Seoul National University, South Korea
Increased root length, which can restore good performance under water stress.
( Gabay et al., 2023 )
SDN1
CRISPR/Cas
University of California
Howard Hughes Medical Institute, USA
University of Haifa, Israel
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Universidad Nacional de San Martín (UNSAM), Argentina
Fudan University
China Agricultural University, China
Karolinska Institutet, Sweden
Tolerance to salt stress.
( Tran et al., 2021 )
SDN1
CRISPR/Cas
Gyeongsang National University, South Korea
College of Agriculture
Bac Lieu University, Vietnam
Cold tolerance.
( Park et al., 2023 )
SDN1
CRISPR/Cas
National Institute of Crop Science
Kyungpook National University, South Korea
Increased cuticular wax biosynthesis resulting in enhanced drought tolerance.
( Shim et al., 2023 )
SDN1
CRISPR/Cas
Seoul National University
Incheon National University
Kyung Hee University, South Korea
Regulated circadian clock: circadian clock measures and conveys day length information to control rhythmic hypocotyl growth in photoperiodic conditions, to achieve optimal fitness. Mutants showed longer hypocotyls, lower core circadian clock morning component mRNA and protein levels, and a shorter circadian rhythm. Exposure to high temperature due to global warming.
(Kim et al., 2022)
SDN1
CRISPR/Cas
National Institute of Agricultural Science
Korea Polar Research Institute
Seoul National University College of Medicine, South Korea
Salinity tolerance. Salinity stress is one of the most important abiotic stress factors affecting rice production worldwide.
( Lim et al., 2021 )
SDN1
CRISPR/Cas
Kangwon National University
Sangji University
Kyung Hee University, South Korea

Traits related to improved food/feed quality

Production of opaque seeds with depleted starch reserves. Reduced starch content and increased amylose content. Accumulation of multiple sugars, fatty acids, amino acids and phytosterols.
( Baysal et al., 2020 )
SDN1
CRISPR/Cas
University of Lleida-Agrotecnio Center
Catalan Institute for Research and Advanced Studies (ICREA), Spain
Royal Holloway University of London, UK
High amylose content. High-amylose starches are digested slowly which could provide increased satiety and reduced risk of diabetes, cardiovascular disease and colorectal cancer.
( Kim et al., 2023 )
SDN1
CRISPR/Cas
Kyungpook National University
National Institute of Crop Science, South Korea
Enhancing the accumulation of eicosapentaenoic acid and docosahexaenoic acid, essential components of a healthy, balanced diet.
( Han et al., 2022 )
SDN1
CRISPR/Cas
Rothamsted Research, UK
Montana State University, USA
Glucoraphanin(GR)-enriched broccoli. Broccoli contains important nutritional components and beneficial phytochemicals. GR, a major glucosinolate (GSL), protects the body against several chronic diseases.
( Kim et al., 2022 )
SDN1
CRISPR/Cas
Sejong University
Jeonbuk National University
Korea Research Institute of Bioscience and Biotechnology
Asia Seed Company Limited, South Korea
Reduced nicotine levels. Nicotine is the addictive component in tobacco.
( Jeong et al., 2024 )
SDN1
CRISPR/Cas
Nulla Bio Inc.
Gyeongsang National University
Gyeongsang National University 501 Jinju-daero, South Korea
Reduced accumulation of free asparagine, the precursor for acrylamide. Acrylamide is a contaminant which forms during the baking, toasting and high-temperature processing of foods made from wheat.
( Raffan et al., 2021 )
SDN1
CRISPR/Cas
Rothamsted Research
University of Bristol, UK
Changing grain composition: decrease in the prolamines, an increase in the glutenins, increased starch content, amylose content, and β-glucan content. The protein matrix surrounding the starch granules was increased.
(Yang et al., 2020)
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
Norwich Research Park, UK
CSIRO Agriculture and Food, Australia
Reduced phytic acid content in soybean seeds. Monogastric animals are unable to digest phytic acid, making phytic acid phosphorous in animal waste one of the major causes of environmental phosphorus pollution.
( Song et al., 2022 )
SDN1
CRISPR/Cas
Dong-A University
Korea Research Institute of Bioscience Biotechnology (KRIBB), South Korea
Reduce allergen proteins. Structural and metabolic proteins, like α-amylase/trypsin inhibitors are involved in the onset of wheat allergies (bakers' asthma) and probably Non-Coeliac Wheat Sensitivity (NCWS).
( Camerlengo et al., 2020 )
SDN1
CRISPR/Cas
University of Tuscia, Italy
Rothamsted Research, UK
Impasse Thérèse Bertrand-Fontaine, France
Altered starch properties. Changes in amylopectin chain-lengths, starch granule initiation and branching frequency.
( Tuncel et al., 2019 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Starch with an increased amylose ratio and elongated amylopectin chains. In food products, high amylose content and long amylopectin chains contribute to a low glycaemic index (GI) after intake, playing a role in health benefits.
( Zhao et al., 2021 )
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Laboratorio de Agrobiotecnología (INTA), Argentina
Increased grain number per spikelet.
( Zhang et al., 2019 )
SDN1
CRISPR/Cas
University of Missouri
South Dakota State University
University of California
Donald Danforth Plant Science Center, USA
University of Bristol, UK
Important metabolic changes affecting tomato fruit quality. Reduced contents of the anti-nutrient oxalic acid.
( Gago et al., 2017 )
SDN1
ZFN
University of Algarve, Portugal
Centre for Research and Technology Hellas
Technological Educational Institution of Crete, Greece
Specific differences in grain morphology, composition and (1,3;1,4)-β-glucan content. Barley rich in (1,3;1,4)-β-glucan, a source of fermentable dietary fibre, is useful to protect against various human health conditions. However, low grain (1,3;1,4)-β-glucan content is preferred for brewing and distilling.
( Garcia-Gimenez et al., 2020 )
SDN1
CRISPR/Cas
The James Hutton Institute
University of Dundee, UK
University of Adelaide
La Trobe University, Australia
Improved starch quality. Starch has many food and technical applications and is often modified to certain specifications.
( Andersson et al., 2017 )
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
Increased iron (Fe) and magnesium (Mn) content for biofortification: increasing the intrinsic nutritional value of crops.
(Connorton et al., 2017)
SDN1
CRISPR/Cas
John Innes Centre
University of East Anglia, UK
Improvement of of functional compounds in tomato fruit, which satisfies the antioxidant properties requirements.
( Kim et al., 2024 )
SDN1
CRISPR/Cas
Hankyong National University
Chungbuk National University, South Korea

Traits related to increased plant yield and growth

Promote growth of axillary buds. Lateral branches develop from the axillary buds. The number of side branches is very important to plant architecture, which influences the yield and quality of the plant.
( Li et al., 2021 )
SDN1
CRISPR/Cas
Guizhou University
Northwest A&
F University
Shandong Agricultural University
Northeast Agricultural University
Shanxi University, China
Oxford University
University of Bedfordshire, UK
Enhanced sink strength in tomato, improving fruit setting, and yield contents.
( Nam et al., 2022 )
SDN1
CRISPR/Cas
Pohang University of Science and Technology
Wonkwang University, South Korea
Regulated sepal growth
( Xing et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University
Chinese Academy of Sciences
Zhejiang University, China
University of Nottingham, UK
Increased grain yield without side effect.
( Gho et al., 2022 )
SDN1
CRISPR/Cas
Kyung Hee University, South Korea
International Rice Research Institute, Philippines
Delayed bolting.
( Shin et al., 2022 )
SDN1
CRISPR/Cas
Kyung Hee University, South Korea
Dwarf phenotype.
( Lawrenson et al., 2015 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Murdoch University, USA
Reduced seed shattering. Seed shattering is one of the main constraints on grain production in African cultivated rice, which causes severe grain losses during harvest.
( Ning et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University, China
Africa Rice Center, Benin
Optimum increase in phloem-transportation capacity leads to improved sink strength in tomato to increase agricultural crop production.
( Nam et al., 2022 )
SDN1
CRISPR/Cas
Pohang University of Science and Technology
Wonkwang University, South Korea
Delayed bolting.
( Shin et al., 2022 )
SDN1
CRISPR/Cas
Kyung Hee University, South Korea
Dwarf phenotype. Tomatoes with compact growth habits and reduced plant height can be useful in some environments.
( Tomlinson et al., 2019 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
University of Minnesota, USA
Customize tomato cultivars for urban agriculture: increased compactness and decreased growth cycle of tomato plants.
(Kwon et al., 2020)
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory
Cornell University
University of Florida, USA
Wonkwang University, South Korea
Weizmann Institute of Science, Israel
Early flowering phenotype with no adverse effect on yield.
( Shang et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Hubei Hongshan Laboratory
Chinese Academy of Agricultural Sciences, China
University of Nottingham, UK
Positive regulation for grain dormancy. Lack of grain dormancy in cereal crops causes losses in yield and quality because of preharvest sprouting.
( Lawrenson et al., 2015 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Murdoch University, Australia
Altered root architecture with increased tillers and total grain weight.
( Rahim et al., 2023 )
SDN1
CRISPR/Cas
Quaid-e-Azam University
National Agricultural Research Centre (NARC)
The University of Haripur, Pakistan
King Saud University, Saudi Arabia
Nile University
Ain Shams University, Egypt
Chonnam National University, South Korea
Increased leaf yield of lettuce by delaying the onset of flowering.
( Choi et al., 2022 )
SDN1
CRISPR/Cas
Korea Research Institute of Bioscience and Biotechnology
Korea University of Science and Technology, South Korea
Generating male sterility lines (MLS). Using MLS in hybrid seed production for monoclinous crops reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas. Complete abolition of pollen development.
( Lee et al., 2016 )
SDN1
CRISPR/Cas
Kyung Hee University, South Korea
Altered spike architecture.
( de Souza Moraes et al., 2022 )
SDN1
CRISPR/Cas
Wageningen University and Research, The Netherlands
Universidade de São Paulo, Brazil
Norwich Research Park, UK
Rheinische Friedrich-Wilhelms-Universität, Germany

Traits related to industrial utilization

New red-grained and pre-harvest sprouting (PHS)-resistant wheat varieties with elite agronomic traits. PHS reduces yield and grain quality, additionally the red pigment of the grain coat contains proanthocyanidins, which have antioxidant activity and thus health-promoting properties.
( Zhu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Fujian Academy of Agricultural Sciences
Henan University
Shenzhen Research Institute of Henan university
Taiyuan University of Technology
Southern University of Science and Technology, China
University of Edinburgh, UK
Increased monounsaturated fatty acid contents (MUFAs). Due to their higher thermal-oxidative stability and viscosity relative to other common fatty acids, MUFAs are preferred for industrial uses, for example as biolubricants and biodiesel fuels.
( Lee et al., 2021 )
SDN1
CRISPR/Cas
National Institute of Agricultural Sciences
Korea Advanced Institute of Science and Technology
Chonnam National University
Plant Engineering Research Institute, South Korea
Early-flowering.
( Jeong et al., 2021 )
SDN1
CRISPR/Cas
Department of Biological Science
Seoul National University
Chungnam National University
Institute for Basic Science
Kangwon National University
Kyunghee University, South Korea
Improve biofuel production by mediating lignin modification. Lignocellulosic biomasses are an abundant renewable source of carbon energy. Heterogenous properties of lignocellulosic biomass and intrinsic recalcitrance caused by cell wall lignification lower the biorefinery efficiency. Reduced lignin content is desired.
( Lee et al., 2021 )
SDN1
CRISPR/Cas
Korea Institute of Science and Technology (KIST)
University of Science and Technology (UST)
Daejeon, South Korea
Bioethanol production: Improved saccharification efficiency without compromising biomass yield.
(Kannan et al., 2017)
SDN1
TALENs
University of Florida
Novozymes North America Inc, USA
Korea Institute of Science and Technology (KIST), South Korea
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Jung et al., 2020 )
SDN1
CRISPR/Cas
Hankyong National University
Hanyang University
Sunchon National University
Chungbuk National University
Tomato Research Center, South Korea
Bio-fuel production: Reduced lignin content, improves cell wall composition for production of bio-ethanol.
(Jung et al., 2016)
SDN1
TALENs
Korea University, South Korea
University of Florida, USA
Hairy root transformation. Hairy roots play a role in multiple processes, ranging from recombinant protein production and metabolic engineering to analyses of rhizosphere physiology and biochemistry.
( Ron et al., 2014 )
SDN1
CRISPR/Cas
University of California
Emory University, USA
University of Cambridge, UK
Higher haploid induction rate. Haploid induction allows formation of doubled haploids, which can be used to rapidly fix genetic information.
( Jang et al., 2023 )
SDN1
CRISPR/Cas
Chonnam National University
Pusan National University
Kyung Hee University, South Korea
Delayed flowering time.
( Hong et al., 2021 )
SDN1
CRISPR/Cas
National Institute of Agricultural Sciences, South Korea

Traits related to product color/flavour

Improved aroma, flavour and fatty acid (FA) profiles of pea seeds.
( Bhowmik et al., 2023 )
SDN1
CRISPR/Cas
National Research Council Canada (NRC)
University of Calgary
University of Saskatchewan
Agriculture and Agri-Food Canada (AAFC)
St. Boniface Hospital Research, Canada
John Innes Centre, UK
Flower color modification to a pale purplish pink flower color compared to the purple violet wild type.
( Yu et al., 2021 )
SDN1
CRISPR/Cas
Hanyang University
Chungnam National University, South Korea
Albino phenotype.
( Wilson et al., 2019 )
SDN1
CRISPR/Cas
NIAB EMR, UK
Brown color and increased sugar content.
( Kim et al., 2022 )
SDN1
CRISPR/Cas
Hankyong National University
Korea Polar Research Institute
Seoul National University College of Medicine
Chungbuk National University, South Korea
Albino phenotype.
( Wilson et al., 2019 )
SDN1
CRISPR/Cas
NIAB EMR, UK
Tangerine color
( Kim et al., 2022 )
SDN2
CRISPR/Cas
Hankyong National University
Korea Polar Research Institute
Chungbuk National University
Seoul National University College of Medicine
Hankyong National University, South Korea
Fine-tuned anthocyanin biosynthesis.
( )
SDN1
CRISPR/Cas
Northeast Forestry University, Horticultural Sub-academy of Heilongjiang Academy of Agricultural Sciences, China
Wonsan University of Agriculture, South Korea

Traits related to storage performance

Improved shelf-life by targeting the genes modulating pectin degradation in ripening tomato.
( Wang et al., 2019 )
SDN1
CRISPR/Cas
University of London
University of Leicester
University of Nottingham
University of Leeds, UK
International Islamic University Malaysia, Malaysia
Shanxi Academy of Agricultural Sciences, China
University of California, USA
Enhanced storage potential of ripening fruits.
( Do et al., 2024 )
SDN1
CRISPR/Cas
Kyungpook National University
Sunchon National University
Catholic University of Korea, South Korea
Reduced enzymatic browning. The formation of dark-colored precipitates in fruits and vegetables causes undesirable changes in organoleptic properties and the loss of nutritional quality.
( Gonzalez et al., 2020 )
SDN1
CRISPR/Cas
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Laboratorio de Agrobiotecnología (INTA)
Universidad Nacional de Mar del Plata, Argentina
Swedish University of Agricultural Sciences, Sweden
Controlling the rate of fruit softening to extend shelf life.
( Uluisik et al., 2016 )
SDN1
CRISPR/Cas
University of Nottingham
Royal Holloway University of London
Heygates Ltd
Syngenta Seeds
Sutton Bonington Campus, UK
Syngenta Crop Protection
University of California
Cornell University
Skidmore College, USA
Decreased postharvest water loss with a 17–30% increase in wax accumulation.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University
Chinese Academy of Sciences, China
University of Nottingham, UK
Delayed onset of riping.
( Jeon et al., 2024 )
SDN1
CRISPR/Cas
Kyungpook National University
Sunchon National University, South Korea
Enhancement of flowering time. Petunia has become popular in the floriculture industry, however it is sensitive to ethylene, which causes flower senescence.
( Xu et al., 2021 )
SDN1
CRISPR/Cas
Kyungpook National University
Kangwon National University, South Korea
Altering tomato fruit ripening and softening, key traits for fleshy fruit. During ripening, fruit will gradually soften which is largely the result of fruit cell wall degradation. Softening may improve the edible quality of fruit but also reduces fruit resistance to pathogenic microorganisms. Fruit softening can cause mechanical damage during storage and transportation as well, which can reduce the storage and shelf life, leading to fruit loss.
( Gao et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University
South China Agricultural University
Fujian Agriculture and Forestry University
Zhejiang University
Beijing University of Agriculture, China
University of Nottingham, UK
Improved shelf-life with improved or not affected sugar: acid ratio, aroma volatiles, and skin color.
(Ortega-Salazar et al., 2023)
SDN1
CRISPR/Cas
University of California, USA
Zhejiang Normal University, China
University of Nottingham, UK