Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 19 results

Traits related to biotic stress tolerance

Viral resistance: Reduced viral load and symptoms after bean yellow dwarf virus (BeYDV) infection.
(Baltes et al., 2015)
SDN1
CRISPR/Cas
University of Minnesota
The Ohio State University, USA
Institute of Biophysics ASCR, Czech Republic
Fungal resistance: resistance to Oidium neolycopersici, causing powdery mildew.
(Nekrasov et al., 2017)
SDN1
CRISPR/Cas
Max Planck Institute for Developmental Biology, Germany
Norwich Research Park, UK
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Wang et al., 2017)
SDN1
TALENs
National University of Singapore, Singapore
Viral resistance: enhanced Potato virus Y (PVY) resistance. PVY infection can result in up to 70% yield loss globally.
(Le et al., 2022)
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology, Vietnam
University of Edinburgh, UK
Bacterial resistance: bacterial leaf-blight resistance, which is a destructive disease caused by Xanthomonas oryzae pv. oryzae. and threatens rice production in tropical and temperate regions.
(Kim et al., 2024)
SDN1
CRISPR/Cas
Chungbuk National University
Hankyong National University, Korea
Mutants were compromised in infectivity of Phytophthora palmivora, a destructive oomycete plant pathogen with a wide host range
( Pettongkhao et al., 2022 )
SDN1
CRISPR/Cas
Prince of Songkla University, Thailand
University of Hawaii at Manoa
East-West Center, USA
Sainsbury Laboratory Cambridge University (SLCU), UK
Rapid and on-site detection of the mycotoxin zearalenone.
( Pei et al., 2024 )
SDN1
CRISPR/Cas
Shaanxi University of Science and Technology
Anhui Agricultural University
China National Center for Food Safety Risk Assessment, China
Queen'
s University Belfast, UK
Enhanced resistance to insects, no serotonin production and higher salicylic acid levels. Rice brown planthopper (BPH; Nilaparvata lugens Stål) and striped stem borer (SSB; Chilo suppressalis) are the two most serious pests in rice production.
( Lu et al., 2018 )
SDN1
CRISPR/Cas
Zhejiang University
Jiaxing Academy of Agricultural Sciences
Wuxi Hupper Bioseed Ltd.
Hubei Collaborative Innovation Center for Grain Industry, China
Newcastle University, UK
Fungal resistance: improved resistance to necrotrophic fungus Botrytis cinerea.
(Jeon et al., 2020)
SDN1
CRISPR/Cas
Stanford University, UK
L’Oreal, France
Howard Hughes Medical Institute, USA

Traits related to improved food/feed quality

Reduce allergen proteins. Structural and metabolic proteins, like α-amylase/trypsin inhibitors are involved in the onset of wheat allergies (bakers' asthma) and probably Non-Coeliac Wheat Sensitivity (NCWS).
( Camerlengo et al., 2020 )
SDN1
CRISPR/Cas
University of Tuscia, Italy
Rothamsted Research, UK
Impasse Thérèse Bertrand-Fontaine, France
Altered starch properties. Changes in amylopectin chain-lengths, starch granule initiation and branching frequency.
( Tuncel et al., 2019 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Increased grain number per spikelet.
( Zhang et al., 2019 )
SDN1
CRISPR/Cas
University of Missouri
South Dakota State University
University of California
Donald Danforth Plant Science Center, USA
University of Bristol, UK
Specific differences in grain morphology, composition and (1,3;1,4)-β-glucan content. Barley rich in (1,3;1,4)-β-glucan, a source of fermentable dietary fibre, is useful to protect against various human health conditions. However, low grain (1,3;1,4)-β-glucan content is preferred for brewing and distilling.
( Garcia-Gimenez et al., 2020 )
SDN1
CRISPR/Cas
The James Hutton Institute
University of Dundee, UK
University of Adelaide
La Trobe University, Australia
Increased iron (Fe) and magnesium (Mn) content for biofortification: increasing the intrinsic nutritional value of crops.
(Connorton et al., 2017)
SDN1
CRISPR/Cas
John Innes Centre
University of East Anglia, UK
Production of opaque seeds with depleted starch reserves. Reduced starch content and increased amylose content. Accumulation of multiple sugars, fatty acids, amino acids and phytosterols.
( Baysal et al., 2020 )
SDN1
CRISPR/Cas
University of Lleida-Agrotecnio Center
Catalan Institute for Research and Advanced Studies (ICREA), Spain
Royal Holloway University of London, UK
Enhancing the accumulation of eicosapentaenoic acid and docosahexaenoic acid, essential components of a healthy, balanced diet.
( Han et al., 2022 )
SDN1
CRISPR/Cas
Rothamsted Research, UK
Montana State University, USA
Lowering phytate synthesis in seeds. Phytate is an anti-nutritient.
( Vlčko and Ohnoutková, 2020 )
SDN1
CRISPR/Cas
Czech Academy of Sciences, Czech Republic
Reduced accumulation of free asparagine, the precursor for acrylamide. Acrylamide is a contaminant which forms during the baking, toasting and high-temperature processing of foods made from wheat.
( Raffan et al., 2021 )
SDN1
CRISPR/Cas
Rothamsted Research
University of Bristol, UK
Changing grain composition: decrease in the prolamines, an increase in the glutenins, increased starch content, amylose content, and β-glucan content. The protein matrix surrounding the starch granules was increased.
(Yang et al., 2020)
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
Norwich Research Park, UK
CSIRO Agriculture and Food, Australia