Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 108 results

Traits related to biotic stress tolerance

Fungal resistance: Reduced susceptibility to necrotrophic fungi. Necrotrophic fungi, such as Botrytis cinerea and Alternaria solani, cause severe damage in tomato production.
(Ramirez Gaona et al., 2023)
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Takii &
Company Limited, Japan
Fungal resistance: strong resistance against Fusarium oxysporum f. sp. lycopersici (Fol), which causes Fusarium Wilt Disease in tomato.
(Debbarma et al., 2023)
SDN1
CRISPR/Cas
CSIR-North East Institute of Science and Technology
Academy of Scientific and Innovative Research
Assam Agricultural University
Central Muga Eri Research and Training Institute
International Crop Research Institute for the Semi Arid Tropics, India
Bacterial resistance: Resistance/moderately resistance against Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv oryzae (Xoo). BLB is a major constraint in rice production.
(Arulganesh et al., 2022)
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Nematode resistance: decreased susceptibility against root-knot nematodes, showing fewer gall and egg masses.
(Noureddine et al., 2023)
SDN1
CRISPR/Cas
Université Côte d’Azur
Université de Toulouse, France
Kumamoto University, Japan
Enhanced resistance to insects, no serotonin production and higher salicylic acid levels. Rice brown planthopper (BPH; Nilaparvata lugens Stål) and striped stem borer (SSB; Chilo suppressalis) are the two most serious pests in rice production.
( Lu et al., 2018 )
SDN1
CRISPR/Cas
Zhejiang University
Jiaxing Academy of Agricultural Sciences
Wuxi Hupper Bioseed Ltd.
Hubei Collaborative Innovation Center for Grain Industry, China
Newcastle University, UK
Viral resistance: improved resistance against a tobamovirus, which could threaten tomato, tobacco, potato and squash plants.
(Miyoshi et al., 2024)
SDN1
CRISPR/Cas
Ehime University
Ehime Research Institute of Agriculture, Japan
Fungal resistance: improved resistance to necrotrophic fungus Botrytis cinerea.
(Jeon et al., 2020)
SDN1
CRISPR/Cas
Stanford University, UK
L’Oreal, France
Howard Hughes Medical Institute, USA
Rapid and on-site detection of the mycotoxin zearalenone.
( Pei et al., 2024 )
SDN1
CRISPR/Cas
Shaanxi University of Science and Technology
Anhui Agricultural University
China National Center for Food Safety Risk Assessment, China
Queen'
s University Belfast, UK
Fungal resistance: Resistance to pathogen Colletotrichum truncatum, causing anthracnose, a major disease accounting for significant pre- and post-harvest yield losses.
(Mishra et al., 2021)
SDN1
CRISPR/Cas
Centurion University of Technology and Management
Siksha O Anusandhan University
Rama Devi Women'
s University, India
Fungal resistance: resistance to Oidium neolycopersici, causing powdery mildew.
(Nekrasov et al., 2017)
SDN1
CRISPR/Cas
Max Planck Institute for Developmental Biology, Germany
Norwich Research Park, UK
Bacterial resistance: improved resistance to Xanthomonas oryzae, which causes bacterial blight, a devastating rice disease resulting in yield losses.
(Oliva et al., 2019)
SDN1
CRISPR/Cas
International Rice Research Institute, Philippines
University of Missouri
University of Florida
Iowa State University
Donald Danforth Plant Science Center, USA
Université Montpellier, France
Heinrich Heine Universität Düsseldorf
Max Planck Institute for Plant Breeding Research
Erfurt University of Applied Sciences, Germany
Nagoya University, Japan
Viral resistance: partial resistance to Pepper veinal mottle virus (PVMV) isolate IC, with plants harboring weak symptoms and low virus loads at the systemic level.
(Moury et al., 2020)
SDN1
CRISPR/Cas
INRA, France
Université de Tunis El-Manar
Université de Carthage, Tunisia
Université Felix Houphouët-Boigny, Cote d’Ivoire
Institut de l’Environnement et de Recherches Agricoles, Burkina Faso
Viral resistance: increased resistance against Tobacco Mosaic Virus (TMV).
(Jogam et al., 2023)
SDN1
CRISPR/Cas
Kakatiya University
Center of Innovative and Applied Bioprocessing (DBT-CIAB), India
University of Minnesota
East Carolina University, USA
Resistance to parasitic weed: Phelipanche aegyptiaca. The obligate root parasitic plant causes great damages to important crops and represents one of the most destructive and greatest challenges for the agricultural economy.
(Bari et al., 2021)
SDN1
CRISPR/Cas
Central University of Punjab, India
Newe Ya’ar Research Center
Agricultural Research Organization (ARO), Israel
Viral resistance: enhanced Potato virus Y (PVY) resistance. PVY infection can result in up to 70% yield loss globally.
(Le et al., 2022)
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology, Vietnam
University of Edinburgh, UK
Bacterial resistance: Plant moderately resistant against a strain of the gram-negative bacterium, Xanthomonas oryzae pv. oryzae (Xoo). Xoo severely impacts rice productivity by causing bacterial leaf blight disease.
(Bhagya Sree et al., 2023)
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Viral resistance: Resistance to Tomato brown rugose fruit virus (ToBRFV), a major threat to the production of tomato.
(Ishikawa et al., 2022)
SDN1
CRISPR/Cas
Institute of Agrobiological Sciences
Takii and Company Limited, Japan
Viral resistance: resistance to rice tungro disease (RTD), the most important viral disease that limits rice production.
(Kumam et al., 2022)
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University
International Centre for Genetic Engineering and Biotechnology
ICAR-Indian Institute of Rice Research, India
Mutants were compromised in infectivity of Phytophthora palmivora, a destructive oomycete plant pathogen with a wide host range
( Pettongkhao et al., 2022 )
SDN1
CRISPR/Cas
Prince of Songkla University, Thailand
University of Hawaii at Manoa
East-West Center, USA
Sainsbury Laboratory Cambridge University (SLCU), UK

Traits related to abiotic stress tolerance

Increased tolerance to salinity stress. Improved rice yields in saline paddy fields by root angle modifications to adapt to climate change.
( Kitomi et al., 2020 )
SDN1
CRISPR/Cas
National Agriculture and Food Research Organization (NARO)
Tohoku University
Institute of Agrobiological Sciences
Japan Science and Technology Agency (JST)
Advanced Analysis Center
National Institute of Advanced Industrial Science and Technology (AIST), Japan
Drought and salt tolerance.
( Kumar et al., 2020 )
SDN1
CRISPR/Cas
ICAR-Indian Agricultural Research Institute
Bhartidasan University, India
Enhanced responses to abscisic acid (ABA), which plays an important role in drought stress responses in plants. Improved drought tolerance through stomatal regulation and increased primary root growth under non-stressed conditions.
( Ogata et al., 2020 )
SDN1
CRISPR/Cas
Japan International Research Center for Agricultural Sciences (JIRCAS)
RIKEN Center for Sustainable Resource Science
University of Tsukuba, Japan
Reduced arsenic content. Arsenic accumulation in rice poses a threat to human health.
( Singh et al., 2024 )
SDN1
CRISPR/Cas
Academy of Scientific and Innovative Research (AcSIR)
CSIR-National Botanical Research Institute
CSIR-National Botanical Research Institute, India
Improved lodging resistance.
( Wakasa et al., 2024 )
SDN1
CRISPR/Cas
Institute of Agrobiological Sciences
Institute of Crop Sciences, Japan

Traits related to improved food/feed quality

Increased sugar content without decreased fruit weight. Sugar content is one of the most important quality traits of tomato.
( Kawaguchi et al., 2021 )
SDN1
CRISPR/Cas
Nagoya University
Kobe University
RIKEN Center for Sustainable Resource Science
University of Tsukuba, Japan
Increased amylose content in the seeds, thus a lower Glycemic Index (GI) value. Low GI rice is preferred to avoid a sudden rise in glucose in the bloodstream. Starch with a high GI threatens healthy individuals to get diabetes type II and proves extremely harmful for existing diabetes type II patients.
( Jameel et al., 2022 )
SDN1
CRISPR/Cas
Jamia Millia Islamia
International Centre for Genetic Engineering and Biotechnology, India
King Saud University, Saudi Arabia
Important metabolic changes affecting tomato fruit quality. Reduced contents of the anti-nutrient oxalic acid.
( Gago et al., 2017 )
SDN1
ZFN
University of Algarve, Portugal
Centre for Research and Technology Hellas
Technological Educational Institution of Crete, Greece
Production of opaque seeds with depleted starch reserves. Reduced starch content and increased amylose content. Accumulation of multiple sugars, fatty acids, amino acids and phytosterols.
( Baysal et al., 2020 )
SDN1
CRISPR/Cas
University of Lleida-Agrotecnio Center
Catalan Institute for Research and Advanced Studies (ICREA), Spain
Royal Holloway University of London, UK
Altered fatty acid composition. High oleic/low linoleic acid rice. Oleic acid has potential health benefits and helps decrease lifestyle disease.
( Abe et al., 2018 )
SDN1
CRISPR/Cas
National Agriculture and Food Research Organization, Japan
Improved fatty acid composition. The content and abundance of fatty acids play an important role in nutritional and processing applications of oilseeds.
( Okuzaki et al., 2018 )
SDN1
CRISPR/Cas
Tamagawa University
Osaka Prefecture University
Tamagawa University, Japan
Enhancing the accumulation of eicosapentaenoic acid and docosahexaenoic acid, essential components of a healthy, balanced diet.
( Han et al., 2022 )
SDN1
CRISPR/Cas
Rothamsted Research, UK
Montana State University, USA
Reduced levels of phytic acid (PA). PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Krishnan et al., 2023 )
SDN1
CRISPR/Cas
ICAR-Indian Agricultural Research Institute (IARI)
Bharathidasan University, India
Increased iron content in potato plants. Iron is an essential micronutrient.
( Chauhan et al., 2024 )
SDN1
CRISPR/Cas
Panjab University
Panjab University
National Institute of Plant Genome Research, India
University of Minnesota, USA
Increased NH4+ and PO43− uptake, and photosynthetic activity under high CO2 conditions in rice. Largely increased panicle weight. Improved grain appearance quality or a decrease in the number of chalky grains.
( Iwamoto et al., 2022 )
SDN1
CRISPR/Cas
Institute of Agrobiological Sciences, Japan
Complete abolition of glycoalkaloids, causing a bitter taste and toxic to various organisms.
( Nakayasu et al., 2018 )
SDN1
CRISPR/Cas
Kobe University, Japan
Reduced accumulation of free asparagine, the precursor for acrylamide. Acrylamide is a contaminant which forms during the baking, toasting and high-temperature processing of foods made from wheat.
( Raffan et al., 2021 )
SDN1
CRISPR/Cas
Rothamsted Research
University of Bristol, UK
Reduced nicotine levels.
Nicotine is an addictive compound leading to severe diseases.
( Singh et al., 2023 )
SDN1
CRISPR/Cas
CSIR-National Botanical Research Institute
Academy of Scientific and Innovative Research (AcSIR)
Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), India
Increased flavonoid content, functioning as allelochemicals and insect deterrents.
( Lam et al., 2019 )
SDN1
CRISPR/Cas
The University of Hong Kong
The Chinese University of Hong Kong
Shenzhen
Zhejiang Academy of Agricultural Sciences
Nanjing Forestry University, China
Kyoto University, Japan
Generation of beta-carotene-enriched banana fruits. Carotenoids, the source of pro vitamin A, are an essential component of dietary antioxidants. Low intakes and poor bioavailability of provitamine A from the vegetarian diet are considered the main reasons for the widespread prevalence of Vitamine A deficiency.
( Kaur et al., 2020 )
SDN1
CRISPR/Cas
Ministry of Science and Technology (Government of India)
Panjab University, India
Changing grain composition: decrease in the prolamines, an increase in the glutenins, increased starch content, amylose content, and β-glucan content. The protein matrix surrounding the starch granules was increased.
(Yang et al., 2020)
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
Norwich Research Park, UK
CSIRO Agriculture and Food, Australia
Negligible levels of the possibly toxic steroidal glykoalkaloids (SGAs), but enhanced levels of steroidal saponins, which has pharmaceutically useful functions.
( Akiyama et al., 2017 )
SDN1
CRISPR/Cas
Kobe University
Riken Center for Sustainable Resource Science
Osaka University, Japan
Reduction of harmful ingredients: toxic steroidal glycoalkaloids (SGAs).
(Sawai et al., 2014)
SDN1
TALENs
RIKEN Center for Sustainable Resource Science
Chiba University, Japan
Reduce allergen proteins. Structural and metabolic proteins, like α-amylase/trypsin inhibitors are involved in the onset of wheat allergies (bakers' asthma) and probably Non-Coeliac Wheat Sensitivity (NCWS).
( Camerlengo et al., 2020 )
SDN1
CRISPR/Cas
University of Tuscia, Italy
Rothamsted Research, UK
Impasse Thérèse Bertrand-Fontaine, France
High gamma-aminobutyric acid (GABA) content. GABA plays a key role in plant stress responses, growth, development and as a nutritional component of grain can also reduce the likelihood of hypertension and diabetes. Increased amino acid content. Higher seed weight and seed protein content.
( Akama et al., 2020 )
SDN1
CRISPR/Cas
Shimane University
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization
Yokohama City University, Japan
Improved aleurone layer with enhanced grain protein content. Improved grain nutritional quality by improved accumulation of essential dietary minerals (Fe, Zn, K, P, Ca) in the endosperm of rice grain. Improved root and shoot architecture.
( Achary et al., 2021 )
SDN1
CRISPR/Cas
International Centre for Genetic Engineering and Biotechnology, India
Altered starch properties. Changes in amylopectin chain-lengths, starch granule initiation and branching frequency.
( Tuncel et al., 2019 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Increased gamma-Aminobutyric acid (GABA) accumulation by 7 to 15 fold while having variable effects on plant and fruit size and yield. GABA is a nonproteogenic amino acid and has health-promoting functions.
( Nonaka et al., 2017 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan
Seedless tomatoes for industrial purposes and direct eating quality.
( Ueta et al., 2017 )
SDN1
CRISPR/Cas
Tokushima University, Japan
Increased grain number per spikelet.
( Zhang et al., 2019 )
SDN1
CRISPR/Cas
University of Missouri
South Dakota State University
University of California
Donald Danforth Plant Science Center, USA
University of Bristol, UK
Reduced steroidal glycoalkaloids.
( Yasumoto et al., 2019 )

TALENs
Osaka University
RIKEN Center for Sustainable Resource Science
Kobe University, Japan
Fragrant rice. Introduction of aroma into any non-aromatic rice varieties.
( Ashokkumar et al., 2020 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Reduced content of anti-nutritional factors in soybean seeds, leading to improved digestibility.
( Figliano et al., 2023 )
SDN1
CRISPR/Cas
UEL - Universidade Estadual de Londrina, Portugal
Specific differences in grain morphology, composition and (1,3;1,4)-β-glucan content. Barley rich in (1,3;1,4)-β-glucan, a source of fermentable dietary fibre, is useful to protect against various human health conditions. However, low grain (1,3;1,4)-β-glucan content is preferred for brewing and distilling.
( Garcia-Gimenez et al., 2020 )
SDN1
CRISPR/Cas
The James Hutton Institute
University of Dundee, UK
University of Adelaide
La Trobe University, Australia
Carotenoid accumulation to solve the problem of vitamin A deficiency that is prevalent in developing countries.
( Endo et al., 2019 )
SDN1
CRISPR/Cas
National Agriculture and Food Research Organization
Ishikawa Prefectural University, Japan
Slender grains in bold grain varieties.
( Shanthinie et al., 2024 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Increased carotenoid, lycopene, and β-carotene.
( Hunziker et al., 2020 )

BE
University of Tsukuba
Kobe University
Institute of Vegetable and Floricultural Science
NARO, Japan
High-quality sugar production by rice (98% sucrose content). Carbohydrates are an essential energy-source. Sugarcane and sugar beet were the only two crop plants used to produce sugar.
( Honma et al., 2020 )
SDN1
CRISPR/Cas
Fujian Agriculture and Forestry University, China
Faculty of Engineering
Kitami Institute of Technology
NagoyaUniversity
Tokyo Metropolitan University, Japan
Carnegie Institution for Science, USA
Increased iron (Fe) and magnesium (Mn) content for biofortification: increasing the intrinsic nutritional value of crops.
(Connorton et al., 2017)
SDN1
CRISPR/Cas
John Innes Centre
University of East Anglia, UK
Seeds low in glucosinolate content and other plant parts high in glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock, they also play a role in plant defence.
( Mann et al., 2023 )
SDN1
CRISPR/Cas
National Institute of Plant Genome Research
University of Delhi South Campus, India
Reduced levels of very long chain saturated fatty acids in kernels, which are associated with revalance of atherosclerosis and cardiovascular disease.
( Huai et al., 2024 )
SDN1
CRISPR/Cas
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, China
International Crops Research Institute of the Semi-Arid Tropics (ICRISAT), India
Murdoch University, Australia

Traits related to increased plant yield and growth

Promote growth of axillary buds. Lateral branches develop from the axillary buds. The number of side branches is very important to plant architecture, which influences the yield and quality of the plant.
( Li et al., 2021 )
SDN1
CRISPR/Cas
Guizhou University
Northwest A&
F University
Shandong Agricultural University
Northeast Agricultural University
Shanxi University, China
Oxford University
University of Bedfordshire, UK
Delayed onset of ripening.
( Nizampatnam et al., 2023 )
SDN1
CRISPR/Cas
University of Hyderabad
SRM University-AP, India
Confer shoot architectural changes for increased resource inputs to increase crop yield.
( Stanic et al., 2021 )
SDN1
CRISPR/Cas
University of Calgary, Canada
SRM Institute of Technology, India
Regulated sepal growth
( Xing et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University
Chinese Academy of Sciences
Zhejiang University, China
University of Nottingham, UK
Altered plant architecture to inrease yield: increased node number on the main stem and branch number.
(Bao et al., 2019)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Huazhong Agricultural University, China
Duy Tan University, Vietnam
RIKEN Center for Sustainable Resource Science, Japan
Improved nitrogen use efficiency, growth and yield in low nitrogen environment.
( Liu et al., 2023 )
SDN1
CRISPR/Cas
The University of Tokyo, Japan
Dwarf phenotype.
( Lawrenson et al., 2015 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Murdoch University, USA
Range of beneficial phenotypes: additional tillers and smaller culms and panicles.
(Cui et al., 2020)
SDN1
CRISPR/Cas
China National Rice Research Institute
Huazhong Agricultural University, China
Yangzhou University, Nagoya University, Japan
Increased stomatal density, stomatal conductance, photosynthetic rate and transpiration rate. Fine tuning the stomatal traits can enhance climate resilience in crops.
( Rathnasamy et al., 2023 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University
Sugarcane Breeding Institute, India
Dwarf phenotype. Tomatoes with compact growth habits and reduced plant height can be useful in some environments.
( Tomlinson et al., 2019 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
University of Minnesota, USA
Regulating fruit ripening, one of the most important concerns in the study of fleshy fruit species.
( Ito et al., 2015 )
SDN1
CRISPR/Cas
National Food Research Institute, Japan
Reduction of plant height through accumulation of ceramides. Plant height is an important agronomic trait of rice, it directly affects the yield potential and lodging resistance.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Nanchang University
Henan Agricultural University, China
Hokkaido University, Japan
Increased grain yield under phosphorus-deficient conditions.
( Ishizaki et al., 2022 )
SDN1
CRISPR/Cas
Japan International Research Center for Agricultural Sciences (JIRCAS), Japan
Early flowering phenotype with no adverse effect on yield.
( Shang et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Hubei Hongshan Laboratory
Chinese Academy of Agricultural Sciences, China
University of Nottingham, UK
Positive regulation for grain dormancy. Lack of grain dormancy in cereal crops causes losses in yield and quality because of preharvest sprouting.
( Lawrenson et al., 2015 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Murdoch University, Australia
Increased tiller number and grain yield.
( Cui et al., 2023 )
SDN1
CRISPR/Cas
The University of Tokyo
Kyoto University
National Institute of Crop Science, Japan
Control grain size and seed coat color.
( Tra et al., 2021 )

BE
International Rice Research Institute, Philippines
Dahlem Center of Plant Sciences Freie Universität, Germany
Synthetic Biology, Biofuel and Genome Editing R&
D Reliance Industries Ltd, India
Altered spike architecture.
( de Souza Moraes et al., 2022 )
SDN1
CRISPR/Cas
Wageningen University and Research, The Netherlands
Universidade de São Paulo, Brazil
Norwich Research Park, UK
Rheinische Friedrich-Wilhelms-Universität, Germany
Elongated, occasionally peanut-like shaped fruit.
( Zheng et al., 2022 )
SDN1
CRISPR/Cas
Nagoya University
Kanazawa University, Japan
Huazhong Agricultural University, China

Traits related to industrial utilization

New red-grained and pre-harvest sprouting (PHS)-resistant wheat varieties with elite agronomic traits. PHS reduces yield and grain quality, additionally the red pigment of the grain coat contains proanthocyanidins, which have antioxidant activity and thus health-promoting properties.
( Zhu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Fujian Academy of Agricultural Sciences
Henan University
Shenzhen Research Institute of Henan university
Taiyuan University of Technology
Southern University of Science and Technology, China
University of Edinburgh, UK
Confer male and female sterility to prevent the risk of trasgene flow from transgenic plants to their wild relatives.
( Shinoyama et al., 2020 )
SDN1
TALENs
Fukui Agricultural Experiment Station
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization (NARO)
Japan Science and Technology Agency (JST)
Yokohama City University, Japan
Altai State University, Russia
Restoring cytoplasmic sterility.
( Kazama et al., 2019 )
SDN2
TALENs
Tohoku University
Tamagawa University
The University of Tokyo
National Institute of Genetics
Tokyo Institute of Technology
Tamagawa University
Japan Science and Technology Agency, Japan
Genetic variability. The genetically reprogrammed rice plants can act as donor lines to stabilize important agronomic traits or can be a potential resource to create more segregating population.
( K et al., 2021 )
SDN1
CRISPR/Cas
University of Agricultural Sciences
Regional Centre for Biotechnology, India
Significantly longer seed dormancy period, may result in reduced pre-harvest sprouting of grains on spikes.
( Abe et al., 2019 )
SDN1
CRISPR/Cas
Institute of Crop Science
Okayama University
Yokohama City University
Institute of Agrobiological Sciences
Obihiro University of Agriculture and Veterinary Medicine, Japan
Dwarf plants that retain favourable fruit traits.
( Nagamine et al., 2024 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan
Production of herbicide-sensitive strain to prevent volunteer infestation. Volunteer rice grows when cultivated rice seed fall into fields, overwinter and spontaneously germinate the next spring.
( Komatsu et al., 2020 )

BE
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization (NARO)
Graduate School of Science
Technology and Innovation, Japan
Induction of haploid plants and a reduced seed set for rice breeding.
( Yao et al., 2018 )
SDN2
CRISPR/Cas
ZhongGuanCun Life Science Park, China
Syngenta India Limited
Technology Centre
Medchal Mandal, India
Syngenta Crop Protection
LLC
Research Triangle Park, USA
Haploid induction to accelerate breeding in crop plants.
( Rangari et al., 2023 )
SDN1
CRISPR/Cas
Punjab Agricultural University, India
Hairy root transformation. Hairy roots play a role in multiple processes, ranging from recombinant protein production and metabolic engineering to analyses of rhizosphere physiology and biochemistry.
( Ron et al., 2014 )
SDN1
CRISPR/Cas
University of California
Emory University, USA
University of Cambridge, UK
Fertility restoration of cytoplasmic male sterility.
( Suketomo et al., 2020 )
SDN1
CRISPR/Cas
Tohoku University, Japan

Traits related to herbicide tolerance

Imazamox
( Shimatani et al. 2017 )

BE
Kobe University
University of Tsukuba
Meijo University, Japan
Herbicide resistance
( Shimatani et al. 2018 )

BE
Kobe University, Japan
University of Tsukuba, Japan
Herbicide tolerance: ALS-inhibiting
(Okuzaki et al., 2004)

ODM
Tohoku University, Japan
Resistance to ALS-inhibiting herbicides.
( Okuzaki et al., 2003 )

ODM
Tohoku University, Japan

Traits related to product color/flavour

Improved aroma, flavour and fatty acid (FA) profiles of pea seeds.
( Bhowmik et al., 2023 )
SDN1
CRISPR/Cas
National Research Council Canada (NRC)
University of Calgary
University of Saskatchewan
Agriculture and Agri-Food Canada (AAFC)
St. Boniface Hospital Research, Canada
John Innes Centre, UK
Flower color modification due to reduced anthocyanin content. Flower color is one of the most important traits in ornamental flowers.
( Nishihara et al. (2018) )
SDN1
CRISPR/Cas
Iwate Biotechnology Research Center, Japan
Albino phenotype.
( Kaur et al., 2017 )
SDN1
CRISPR/Cas
National Agri-Food Biotechnology Institute (NABI), India
Albino phenotype.
( Wilson et al., 2019 )
SDN1
CRISPR/Cas
NIAB EMR, UK
Color modification: yellow. Ipomoea nil exhibits a variety of flower colours, except yellow.
(Watanabe et al., 2018)
SDN1
CRISPR/Cas
University of Tsukuba
National Agriculture and Food Research Organization, Japan
Albino phenotype.
( Phad et al., 2023 )
SDN1
CRISPR/Cas
Plant Biotechnology Research Center, India
Albino phenotype.
( Wilson et al., 2019 )
SDN1
CRISPR/Cas
NIAB EMR, UK

Traits related to storage performance

Improved shelf-life by targeting the genes modulating pectin degradation in ripening tomato.
( Wang et al., 2019 )
SDN1
CRISPR/Cas
University of London
University of Leicester
University of Nottingham
University of Leeds, UK
International Islamic University Malaysia, Malaysia
Shanxi Academy of Agricultural Sciences, China
University of California, USA
Enhanced oleic acid to linoleic acid ratio. This adjusted ratio can improve the shelf life of peanut oil.
( Rajyaguru et al., 2024 )
SDN1
CRISPR/Cas
Junagadh Agricultural University, India
The fruit remains green and shows higher firmness as well as no early fermentation. This results in extended shelf-life which could reduce food loss and contribute to food security.
( Nonaka et al., 2023 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan
Controlling the rate of fruit softening to extend shelf life.
( Uluisik et al., 2016 )
SDN1
CRISPR/Cas
University of Nottingham
Royal Holloway University of London
Heygates Ltd
Syngenta Seeds
Sutton Bonington Campus, UK
Syngenta Crop Protection
University of California
Cornell University
Skidmore College, USA
Decreased postharvest water loss with a 17–30% increase in wax accumulation.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University
Chinese Academy of Sciences, China
University of Nottingham, UK
Altering tomato fruit ripening and softening, key traits for fleshy fruit. During ripening, fruit will gradually soften which is largely the result of fruit cell wall degradation. Softening may improve the edible quality of fruit but also reduces fruit resistance to pathogenic microorganisms. Fruit softening can cause mechanical damage during storage and transportation as well, which can reduce the storage and shelf life, leading to fruit loss.
( Gao et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University
South China Agricultural University
Fujian Agriculture and Forestry University
Zhejiang University
Beijing University of Agriculture, China
University of Nottingham, UK
Improved shelf-life with improved or not affected sugar: acid ratio, aroma volatiles, and skin color.
(Ortega-Salazar et al., 2023)
SDN1
CRISPR/Cas
University of California, USA
Zhejiang Normal University, China
University of Nottingham, UK