Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Sdn Type

Displaying 86 results

Traits related to biotic stress tolerance

Highly significant reduction in susceptibility to fire blight, caused by the bacterium Erwinia amylovora. Apple is one of the most cultivated fruit crops throughout the temperate regions of the world.
( Pompili et al., 2020 )
SDN1
CRISPR/Cas
Università degli Studi di Udine
Fondazione Edmund Mach, Italy
Bacterial resistance: improved resistance to Xanthomonas oryzae, which causes bacterial blight, a devastating rice disease resulting in yield losses.
(Oliva et al., 2019)
SDN1
CRISPR/Cas
International Rice Research Institute, Philippines
University of Missouri
University of Florida
Iowa State University
Donald Danforth Plant Science Center, USA
Université Montpellier, France
Heinrich Heine Universität Düsseldorf
Max Planck Institute for Plant Breeding Research
Erfurt University of Applied Sciences, Germany
Nagoya University, Japan
Mutants were compromised in infectivity of Phytophthora palmivora, a destructive oomycete plant pathogen with a wide host range
( Pettongkhao et al., 2022 )
SDN1
CRISPR/Cas
Prince of Songkla University, Thailand
University of Hawaii at Manoa
East-West Center, USA
Sainsbury Laboratory Cambridge University (SLCU), UK
Viral resistance: improved resistance against a tobamovirus, which could threaten tomato, tobacco, potato and squash plants.
(Miyoshi et al., 2024)
SDN1
CRISPR/Cas
Ehime University
Ehime Research Institute of Agriculture, Japan
Fungal resistance: Enhanced resistance against powdery mildew, caused by Oidium neolycopersici, which is a major concern for the productivity of tomato plants.
(Li et al., 2024)
SDN1
CRISPR/Cas
University of Torino, Italy
Wageningen University &
Research, The Netherlands
Shanxi Agricultural University, China
Fungal resistance: effective reduction of susceptibility against downy mildew by increasing salicylic acid levels. The pathogen can devastate individual vineyards and in some cases also affect production from entire regions.
(Giacomelli et al., 2023)
SDN1
CRISPR/Cas
Research and Innovation Centre
Fondazione Edmund Mach, Italy
Enza Zaden
Hudson River Biotechnology, The Netherlands
Viral resistance: Resistance to Tomato brown rugose fruit virus (ToBRFV), a major threat to the production of tomato.
(Ishikawa et al., 2022)
SDN1
CRISPR/Cas
Institute of Agrobiological Sciences
Takii and Company Limited, Japan
Enhanced resistance to insects, no serotonin production and higher salicylic acid levels. Rice brown planthopper (BPH; Nilaparvata lugens Stål) and striped stem borer (SSB; Chilo suppressalis) are the two most serious pests in rice production.
( Lu et al., 2018 )
SDN1
CRISPR/Cas
Zhejiang University
Jiaxing Academy of Agricultural Sciences
Wuxi Hupper Bioseed Ltd.
Hubei Collaborative Innovation Center for Grain Industry, China
Newcastle University, UK
Fungal resistance: improved resistance to necrotrophic fungus Botrytis cinerea.
(Jeon et al., 2020)
SDN1
CRISPR/Cas
Stanford University, UK
L’Oreal, France
Howard Hughes Medical Institute, USA
Viral resistance: reduced viral accumulation and amelioration of virus-induced symptoms by Potato Virus Y.
(Lucioli et al., 2022)
SDN1
CRISPR/Cas
ENEA
Council for Agricultural Research and Economics (CREA), Italy
National Agricultural Research and Innovation Centre, Hungary
Oomycete resistance: resistance against downly mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Laura et al., 2023)
SDN1
CRISPR/Cas
Research Centre for Vegetable and Ornamental Crops
Institute of Agricultural Biology and Biotechnology
Institute for Sustainable Plant Protection
Research Centre for Olive Fruit and Citrus Crops
University of Pisa
Center for Agricultural Experimentation and Assistance
Institute of Biosciences and Bioresources, Italy
Rapid and on-site detection of the mycotoxin zearalenone.
( Pei et al., 2024 )
SDN1
CRISPR/Cas
Shaanxi University of Science and Technology
Anhui Agricultural University
China National Center for Food Safety Risk Assessment, China
Queen'
s University Belfast, UK
Fungal resistance: increased tolerance to Late Blight disease, which could be devastating to tomato yields.
(Maioli et al., 2024)
SDN1
CRISPR/Cas
University of Torino, Italy
Ingeniero Fausto Elio/n, Spain
Wageningen University &
Research,
Fungal resistance: resistance to Oidium neolycopersici, causing powdery mildew.
(Nekrasov et al., 2017)
SDN1
CRISPR/Cas
Max Planck Institute for Developmental Biology, Germany
Norwich Research Park, UK
Fungal resistance: increased resistance to Erysiphe necator, causing powdery mildew in grape cultivar. The pathogen infects all green tissues and berries, leading to dramatic losses in yield and berry quality.
(Malnoy et al., 2016)
SDN1
CRISPR/Cas
Fondazione Edmund Mach, Italy
ToolGen Inc.
Institute for Basic Science
Seoul National University, South Korea
Fungal resistance: Reduced susceptibility to necrotrophic fungi. Necrotrophic fungi, such as Botrytis cinerea and Alternaria solani, cause severe damage in tomato production.
(Ramirez Gaona et al., 2023)
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Takii &
Company Limited, Japan
Nematode resistance: decreased susceptibility against root-knot nematodes, showing fewer gall and egg masses.
(Noureddine et al., 2023)
SDN1
CRISPR/Cas
Université Côte d’Azur
Université de Toulouse, France
Kumamoto University, Japan
Viral resistance: enhanced Potato virus Y (PVY) resistance. PVY infection can result in up to 70% yield loss globally.
(Le et al., 2022)
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology, Vietnam
University of Edinburgh, UK
Bacterial resistance: Increased resistance to Erwinia amylovora, causing fire blight disease that threatens the apple and a wide range of ornamental and commercial Rosaceae host plants.
(Malnoy et al., 2016)
SDN1
CRISPR/Cas
Fondazione Edmund Mach, Italy
ToolGen Inc.
Institute for Basic Science
Seoul National University, South Korea
Viral resistance: improved resistance against tomato yellow leaf curl virus (TYLCV). TYLCV causes significant economic losses in tomato production worldwide.
(Faal et al., 2020)
SDN1
CRISPR/Cas
Ferdowsi University of Mashhad, Iran

Traits related to abiotic stress tolerance

Increased drought-avoidance strategy.
( Maioli et al., 2024 )
SDN1
CRISPR/Cas
University of Torino, Italy
Ingeniero Fausto Elio/n, Spain
Wageningen University &
Research, The Netherlands
Improved lodging resistance.
( Wakasa et al., 2024 )
SDN1
CRISPR/Cas
Institute of Agrobiological Sciences
Institute of Crop Sciences, Japan
Increased tolerance to salinity stress. Improved rice yields in saline paddy fields by root angle modifications to adapt to climate change.
( Kitomi et al., 2020 )
SDN1
CRISPR/Cas
National Agriculture and Food Research Organization (NARO)
Tohoku University
Institute of Agrobiological Sciences
Japan Science and Technology Agency (JST)
Advanced Analysis Center
National Institute of Advanced Industrial Science and Technology (AIST), Japan
Improved drought tolerance.
( D'Incà., 2024 )
SDN1
CRISPR/Cas
University Roma Tre
Universit `a di Trieste
IOAG-BIOTECC.R. Casaccia
Sapienza University of Rome
University of Milano
Roma Tre Section
Instituto Nazionale Biostrutture e Biosistemi (INBB)
National Biodiversity Future Center, Italy
Enhanced responses to abscisic acid (ABA), which plays an important role in drought stress responses in plants. Improved drought tolerance through stomatal regulation and increased primary root growth under non-stressed conditions.
( Ogata et al., 2020 )
SDN1
CRISPR/Cas
Japan International Research Center for Agricultural Sciences (JIRCAS)
RIKEN Center for Sustainable Resource Science
University of Tsukuba, Japan

Traits related to improved food/feed quality

Improved fatty acid composition. The content and abundance of fatty acids play an important role in nutritional and processing applications of oilseeds.
( Okuzaki et al., 2018 )
SDN1
CRISPR/Cas
Tamagawa University
Osaka Prefecture University
Tamagawa University, Japan
Increased iron (Fe) and magnesium (Mn) content for biofortification: increasing the intrinsic nutritional value of crops.
(Connorton et al., 2017)
SDN1
CRISPR/Cas
John Innes Centre
University of East Anglia, UK
Negligible levels of the possibly toxic steroidal glykoalkaloids (SGAs), but enhanced levels of steroidal saponins, which has pharmaceutically useful functions.
( Akiyama et al., 2017 )
SDN1
CRISPR/Cas
Kobe University
Riken Center for Sustainable Resource Science
Osaka University, Japan
Production of opaque seeds with depleted starch reserves. Reduced starch content and increased amylose content. Accumulation of multiple sugars, fatty acids, amino acids and phytosterols.
( Baysal et al., 2020 )
SDN1
CRISPR/Cas
University of Lleida-Agrotecnio Center
Catalan Institute for Research and Advanced Studies (ICREA), Spain
Royal Holloway University of London, UK
Altered fatty acid composition. High oleic/low linoleic acid rice. Oleic acid has potential health benefits and helps decrease lifestyle disease.
( Abe et al., 2018 )
SDN1
CRISPR/Cas
National Agriculture and Food Research Organization, Japan
Increased flavonoid content, functioning as allelochemicals and insect deterrents.
( Lam et al., 2019 )
SDN1
CRISPR/Cas
The University of Hong Kong
The Chinese University of Hong Kong
Shenzhen
Zhejiang Academy of Agricultural Sciences
Nanjing Forestry University, China
Kyoto University, Japan
Enhancing the accumulation of eicosapentaenoic acid and docosahexaenoic acid, essential components of a healthy, balanced diet.
( Han et al., 2022 )
SDN1
CRISPR/Cas
Rothamsted Research, UK
Montana State University, USA
Increased gamma-Aminobutyric acid (GABA) accumulation by 7 to 15 fold while having variable effects on plant and fruit size and yield. GABA is a nonproteogenic amino acid and has health-promoting functions.
( Nonaka et al., 2017 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan
Complete abolition of glycoalkaloids, causing a bitter taste and toxic to various organisms.
( Nakayasu et al., 2018 )
SDN1
CRISPR/Cas
Kobe University, Japan
Reduced accumulation of free asparagine, the precursor for acrylamide. Acrylamide is a contaminant which forms during the baking, toasting and high-temperature processing of foods made from wheat.
( Raffan et al., 2021 )
SDN1
CRISPR/Cas
Rothamsted Research
University of Bristol, UK
High gamma-aminobutyric acid (GABA) content. GABA plays a key role in plant stress responses, growth, development and as a nutritional component of grain can also reduce the likelihood of hypertension and diabetes. Increased amino acid content. Higher seed weight and seed protein content.
( Akama et al., 2020 )
SDN1
CRISPR/Cas
Shimane University
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization
Yokohama City University, Japan
Changing grain composition: decrease in the prolamines, an increase in the glutenins, increased starch content, amylose content, and β-glucan content. The protein matrix surrounding the starch granules was increased.
(Yang et al., 2020)
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
Norwich Research Park, UK
CSIRO Agriculture and Food, Australia
Seedless tomatoes for industrial purposes and direct eating quality.
( Ueta et al., 2017 )
SDN1
CRISPR/Cas
Tokushima University, Japan
Reduce allergen proteins. Structural and metabolic proteins, like α-amylase/trypsin inhibitors are involved in the onset of wheat allergies (bakers' asthma) and probably Non-Coeliac Wheat Sensitivity (NCWS).
( Camerlengo et al., 2020 )
SDN1
CRISPR/Cas
University of Tuscia, Italy
Rothamsted Research, UK
Impasse Thérèse Bertrand-Fontaine, France
Increased sugar content without decreased fruit weight. Sugar content is one of the most important quality traits of tomato.
( Kawaguchi et al., 2021 )
SDN1
CRISPR/Cas
Nagoya University
Kobe University
RIKEN Center for Sustainable Resource Science
University of Tsukuba, Japan
Altered starch properties. Changes in amylopectin chain-lengths, starch granule initiation and branching frequency.
( Tuncel et al., 2019 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Altered gliadin levels resulting in improved end-use quality and reduced gluten epitopes associated with celiac disease. Gliadins are important for wheat end-use traits.
( Liu et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University, China
Research Centre for Cereal and Industrial Crops, Italy
High-quality sugar production by rice (98% sucrose content). Carbohydrates are an essential energy-source. Sugarcane and sugar beet were the only two crop plants used to produce sugar.
( Honma et al., 2020 )
SDN1
CRISPR/Cas
Fujian Agriculture and Forestry University, China
Faculty of Engineering
Kitami Institute of Technology
NagoyaUniversity
Tokyo Metropolitan University, Japan
Carnegie Institution for Science, USA
Increased grain number per spikelet.
( Zhang et al., 2019 )
SDN1
CRISPR/Cas
University of Missouri
South Dakota State University
University of California
Donald Danforth Plant Science Center, USA
University of Bristol, UK
Increased NH4+ and PO43− uptake, and photosynthetic activity under high CO2 conditions in rice. Largely increased panicle weight. Improved grain appearance quality or a decrease in the number of chalky grains.
( Iwamoto et al., 2022 )
SDN1
CRISPR/Cas
Institute of Agrobiological Sciences, Japan
Specific differences in grain morphology, composition and (1,3;1,4)-β-glucan content. Barley rich in (1,3;1,4)-β-glucan, a source of fermentable dietary fibre, is useful to protect against various human health conditions. However, low grain (1,3;1,4)-β-glucan content is preferred for brewing and distilling.
( Garcia-Gimenez et al., 2020 )
SDN1
CRISPR/Cas
The James Hutton Institute
University of Dundee, UK
University of Adelaide
La Trobe University, Australia
Mutant cell lines doubled the accumulation level of anthocyanins biosynthesized. The production of these important pigments was stabilized over time.
( D'Amelia et al., 2022 )
SDN1
CRISPR/Cas
National Research Council of Italy
University of Naples Federico II
Council for Agricultural Research and Economics, Italy
Carotenoid accumulation to solve the problem of vitamin A deficiency that is prevalent in developing countries.
( Endo et al., 2019 )
SDN1
CRISPR/Cas
National Agriculture and Food Research Organization
Ishikawa Prefectural University, Japan

Traits related to increased plant yield and growth

Elongated, occasionally peanut-like shaped fruit.
( Zheng et al., 2022 )
SDN1
CRISPR/Cas
Nagoya University
Kanazawa University, Japan
Huazhong Agricultural University, China
Altered spike architecture.
( de Souza Moraes et al., 2022 )
SDN1
CRISPR/Cas
Wageningen University and Research, The Netherlands
Universidade de São Paulo, Brazil
Norwich Research Park, UK
Rheinische Friedrich-Wilhelms-Universität, Germany
Promote growth of axillary buds. Lateral branches develop from the axillary buds. The number of side branches is very important to plant architecture, which influences the yield and quality of the plant.
( Li et al., 2021 )
SDN1
CRISPR/Cas
Guizhou University
Northwest A&
F University
Shandong Agricultural University
Northeast Agricultural University
Shanxi University, China
Oxford University
University of Bedfordshire, UK
Altered plant architecture to inrease yield: increased node number on the main stem and branch number.
(Bao et al., 2019)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Huazhong Agricultural University, China
Duy Tan University, Vietnam
RIKEN Center for Sustainable Resource Science, Japan
Regulated sepal growth
( Xing et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University
Chinese Academy of Sciences
Zhejiang University, China
University of Nottingham, UK
Reduction of plant height through accumulation of ceramides. Plant height is an important agronomic trait of rice, it directly affects the yield potential and lodging resistance.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Nanchang University
Henan Agricultural University, China
Hokkaido University, Japan
Root growth angle regulation, among the most important determinants of root system architecture. Root growth angle controls water uptake capacity, stress resilience, nutrient use efficiency and thus yield of crop plants.
( Kirschner et al., 2021 )
SDN1
CRISPR/Cas
University of Bonn
University of Cologne
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben
Justus-Liebig-University Giessen, Germany
University of Bologna, Italy

Range of beneficial phenotypes: additional tillers and smaller culms and panicles.
(Cui et al., 2020)
SDN1
CRISPR/Cas
China National Rice Research Institute
Huazhong Agricultural University, China
Yangzhou University, Nagoya University, Japan
Dwarf phenotype.
( Lawrenson et al., 2015 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Murdoch University, USA
Increased tiller number and grain yield.
( Cui et al., 2023 )
SDN1
CRISPR/Cas
The University of Tokyo
Kyoto University
National Institute of Crop Science, Japan
Regulating fruit ripening, one of the most important concerns in the study of fleshy fruit species.
( Ito et al., 2015 )
SDN1
CRISPR/Cas
National Food Research Institute, Japan
Dwarf phenotype. Tomatoes with compact growth habits and reduced plant height can be useful in some environments.
( Tomlinson et al., 2019 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
University of Minnesota, USA
Increased grain yield under phosphorus-deficient conditions.
( Ishizaki et al., 2022 )
SDN1
CRISPR/Cas
Japan International Research Center for Agricultural Sciences (JIRCAS), Japan
Early flowering phenotype with no adverse effect on yield.
( Shang et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Hubei Hongshan Laboratory
Chinese Academy of Agricultural Sciences, China
University of Nottingham, UK
Improved nitrogen use efficiency, growth and yield in low nitrogen environment.
( Liu et al., 2023 )
SDN1
CRISPR/Cas
The University of Tokyo, Japan
Positive regulation for grain dormancy. Lack of grain dormancy in cereal crops causes losses in yield and quality because of preharvest sprouting.
( Lawrenson et al., 2015 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Murdoch University, Australia
Improved spikelet number per panicle led to increased grain yield per plant.
( Ludwig et al., 2023 )
SDN1
CRISPR/Cas
International Rice Research Institute (IRRI), Philippines
University of Pavia, Italy

Traits related to industrial utilization

Removal of methyl iodide emissions. The release of methyl iodide in the athmospere causes ozone depletion and thus represents an important environmental threat.
( Carlessi et al., 2021 )
SDN1
CRISPR/Cas
PlantLab
Institute of Life Sciences
Scuola Superiore Sant’Anna
University of Pisa
University of Milan, Italy
New red-grained and pre-harvest sprouting (PHS)-resistant wheat varieties with elite agronomic traits. PHS reduces yield and grain quality, additionally the red pigment of the grain coat contains proanthocyanidins, which have antioxidant activity and thus health-promoting properties.
( Zhu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Fujian Academy of Agricultural Sciences
Henan University
Shenzhen Research Institute of Henan university
Taiyuan University of Technology
Southern University of Science and Technology, China
University of Edinburgh, UK
Dwarf plants that retain favourable fruit traits.
( Nagamine et al., 2024 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan
Fertility restoration of cytoplasmic male sterility.
( Suketomo et al., 2020 )
SDN1
CRISPR/Cas
Tohoku University, Japan
Improved saccharification efficiency by an altered cell wall architecture.
( Nayeri et al., 2022 )
SDN1
CRISPR/Cas
Shahid Beheshti University
University of Tabriz, Iran
Significantly longer seed dormancy period, may result in reduced pre-harvest sprouting of grains on spikes.
( Abe et al., 2019 )
SDN1
CRISPR/Cas
Institute of Crop Science
Okayama University
Yokohama City University
Institute of Agrobiological Sciences
Obihiro University of Agriculture and Veterinary Medicine, Japan
Accelerated domestication of African rice landraces by improving domestication traits such as sheed shattering, lodging and seed yield. The acceleration of the development of high-yield African landrace varieties is important considering that Africa has a strong growing population and prone to food shortage.
( Lacchini et al., 2020 )
SDN1
CRISPR/Cas
University of Milan, Italy
University of Montpellier, France
Hairy root transformation. Hairy roots play a role in multiple processes, ranging from recombinant protein production and metabolic engineering to analyses of rhizosphere physiology and biochemistry.
( Ron et al., 2014 )
SDN1
CRISPR/Cas
University of California
Emory University, USA
University of Cambridge, UK

Traits related to product color/flavour

Color modification: yellow. Ipomoea nil exhibits a variety of flower colours, except yellow.
(Watanabe et al., 2018)
SDN1
CRISPR/Cas
University of Tsukuba
National Agriculture and Food Research Organization, Japan
Improved aroma, flavour and fatty acid (FA) profiles of pea seeds.
( Bhowmik et al., 2023 )
SDN1
CRISPR/Cas
National Research Council Canada (NRC)
University of Calgary
University of Saskatchewan
Agriculture and Agri-Food Canada (AAFC)
St. Boniface Hospital Research, Canada
John Innes Centre, UK
Albino phenotype.
( Wilson et al., 2019 )
SDN1
CRISPR/Cas
NIAB EMR, UK
Anthocyanin-rich and pigmented sweet oranges.
( Salonia et al., 2022 )
SDN1
CRISPR/Cas
Research Centre for Olive Fruit and Citrus Crops
University of Catania
Research and Innovation Centre Trento, Italy
Albino phenotype.
( Wilson et al., 2019 )
SDN1
CRISPR/Cas
NIAB EMR, UK
Flower color modification due to reduced anthocyanin content. Flower color is one of the most important traits in ornamental flowers.
( Nishihara et al. (2018) )
SDN1
CRISPR/Cas
Iwate Biotechnology Research Center, Japan

Traits related to storage performance

Improved shelf-life with improved or not affected sugar: acid ratio, aroma volatiles, and skin color.
(Ortega-Salazar et al., 2023)
SDN1
CRISPR/Cas
University of California, USA
Zhejiang Normal University, China
University of Nottingham, UK
The fruit remains green and shows higher firmness as well as no early fermentation. This results in extended shelf-life which could reduce food loss and contribute to food security.
( Nonaka et al., 2023 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan
Reduced fruit flesh browning. The browning of eggplant berry flesh after cutting has a negative impact on fruit quality for both industrial transformation and fresh consumption.
( Maioli et al., 2020 )
SDN1
CRISPR/Cas
University of Torino, Italy
Instituto de Biologica Molecular y Celular de Plantas (IBMCP)
Universitat Politècnica de València, Spain
Improved shelf-life by targeting the genes modulating pectin degradation in ripening tomato.
( Wang et al., 2019 )
SDN1
CRISPR/Cas
University of London
University of Leicester
University of Nottingham
University of Leeds, UK
International Islamic University Malaysia, Malaysia
Shanxi Academy of Agricultural Sciences, China
University of California, USA
Controlling the rate of fruit softening to extend shelf life.
( Uluisik et al., 2016 )
SDN1
CRISPR/Cas
University of Nottingham
Royal Holloway University of London
Heygates Ltd
Syngenta Seeds
Sutton Bonington Campus, UK
Syngenta Crop Protection
University of California
Cornell University
Skidmore College, USA
Decreased postharvest water loss with a 17–30% increase in wax accumulation.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University
Chinese Academy of Sciences, China
University of Nottingham, UK
Altering tomato fruit ripening and softening, key traits for fleshy fruit. During ripening, fruit will gradually soften which is largely the result of fruit cell wall degradation. Softening may improve the edible quality of fruit but also reduces fruit resistance to pathogenic microorganisms. Fruit softening can cause mechanical damage during storage and transportation as well, which can reduce the storage and shelf life, leading to fruit loss.
( Gao et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University
South China Agricultural University
Fujian Agriculture and Forestry University
Zhejiang University
Beijing University of Agriculture, China
University of Nottingham, UK