Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 12 results

Traits related to biotic stress tolerance

Viral resistance: Reduced viral load and symptoms after bean yellow dwarf virus (BeYDV) infection.
(Baltes et al., 2015)
SDN1
CRISPR/Cas
University of Minnesota
The Ohio State University, USA
Institute of Biophysics ASCR, Czech Republic
Viral resistance: resistance to Tomato yellow leaf curl virus (TYLCV). Delayed or reduced accumulation of viral DNA and abolished or attenuated symptoms of infection.
(Ali et al., 2015)
SDN1
CRISPR/Cas
King Abdullah University of Science and Technology, Saudi Arabia
Viral resistance: increased resistance to chickpea chlorotic dwarf virus (CpCDV).
(Malik et al., 2023)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Washington State University, USA
Resistance to parasitic weed: Striga spp. The parasitic plant reduces yields of cereal crops worldwide.
(Hao et al., 2023)
SDN1
CRISPR/Cas
University of Nebraska-Lincoln
Pennsylvania State University, USA
International Maize and Wheat Improvement Center (CIMMYT), Senegal
Kenyatta University, Kenya

Viral resistance: highly efficient resistance to a broad spectrum of geminiviruses. Geminiviruses severely damage economically important crops worldwide.
(Li et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Guangxi University
Zhejiang University, China

Traits related to improved food/feed quality

Increased digestibility and protein quality. Reduced kafirin levels. Kafirins are the major storage proteins in sorghum grains and form protein bodies with poor digestibility. Kafirins are devoid of the essential amino acid lysine, they also impart poor protein quality to the kernel.
( Li et al., 2018 )
SDN1
CRISPR/Cas
University of Nebraska
University of Missouri, USA
Fragrant sorghum. No fragrant sorghums are currently on the market. Extraordinary aromatic smell in both seeds and leaves. Experiments showed that fragrant sorghum leaves were attractable for animal feeding.
( Zhang et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Animal facility Institute of Genetics and Developmental Biology, China
Improved kafirin digestibility, which increases the grain nutritional value.
( Elkonin et al., 2023 )
SDN1
CRISPR/Cas
Federal Centre of Agriculture Research of South-East Region
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Russia
Improved digestibility of kafirins, which increases the grain nutritional value.
( Elkonin et al., 2023 )
SDN1
CRISPR/Cas
Federal Centre of Agriculture Research of South-East Region
Institute of Biochemistry and Genetics, Russia

Traits related to increased plant yield and growth

Improved plant architecture: increased shoot branching, reduced plant height, increased number of leaves and nodes and reduced total plant biomass.
(Gao et al., 2018)
SDN1
CRISPR/Cas
Southwest University
Yunnan Academy of Tobacco Agricultural Sciences, China
Altering leaf inclination angle which has the potential to elevate yield in high-density plantings.
( Brant et al., 2022 )
SDN1
CRISPR/Cas
University of Florida
DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
Kastamonu University, Turkey

Traits related to industrial utilization

Manipulation of self-incompatibility.
( Zhang et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Aarhus University
DLF Seeds A/S, Denmark