Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Sdn Type

Displaying 25 results

Traits related to biotic stress tolerance

Fungal resistance: Reduced pathogenicity to the oomycete Phytophthora palmivora, a destructive pathogen that infects all parts of papaya plants. Increased papain sensitvity of in-vitro growth. Papaya fruits contain papain, a cysteine protease that mediates plant defense against pathogens and insects.
(Gumtow et al., 2018)
SDN1
CRISPR/Cas
University of Hawaii at Manoa, USA
Fungal resistance: Increased resistance to Phytophthora sojae, a pathogen severely impairing soybean production.
(Yu et al., 2021)
SDN1
CRISPR/Cas
Northeast Agricultural University
Chinese Academy of Agricultural Sciences
Shanghai Jiao Tong University
Jilin Academy of Agricultural Science
Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences
Heilongjiang Academy of Agricultural Sciences, China
Mutants were compromised in infectivity of Phytophthora palmivora, a destructive oomycete plant pathogen with a wide host range
( Pettongkhao et al., 2022 )
SDN1
CRISPR/Cas
Prince of Songkla University, Thailand
University of Hawaii at Manoa
East-West Center, USA
Sainsbury Laboratory Cambridge University (SLCU), UK
High level of powdery mildew resistance while maintaining normal crop
growth and yields.
( Li et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Robust rust resistance to pandemic stripe rust caused by Puccinia striiformis (Pst) without growth and yield penalty.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
Northwest A&
F University
Chinese Academy of Sciences, China
Resistance against leaf chewing insects: leaf-chewing insects cause yield loss and reduce seed quality in soybeans
(Zhang et al., 2022)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Huazhong Agricultural University
Henan Agricultural University, China
Resistance to Phytophthora sojae, which severely impairs soybean production.
( Yu et al., 2022 )
SDN1
CRISPR/Cas
Northeast Agricultural University
Chinese Academy of Agricultural Sciences
Jilin Academy of Agricultural Science
Shanghai Jiao Tong University
Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences, China
Viral resistance: increased resistance against wheat yellow mosaic virus (WYMV) without yield penalty. WYMV results in severe yield losses in hexaploid wheat.
(Kan et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences (CAAS)
Agricultural Sciences Institute in Jiangsu Lixiahe Area, China
Fungal resistance: increased resistance against the fungus Puccinia striiformis f. sp. tritici (Pst). Wheat stripe rust is caused by Pst and is one of the most destructive wheat diseases, resulting in significant losses to wheat production worldwide.
(He et al., 2022)
SDN1
CRISPR/Cas
Northwest A&
F University
Hebei Agri cultural University, China
Fungal resistance to Oidium neolycopersici, causing powdery mildew, one of the most important diseases limiting the production of wheat.
( Wang et al., 2014 )
SDN1
TALENs
Chinese Academy of Sciences, China
Fungal resistance to Oidium neolycopersici, causing powdery mildew, one of the most important diseases limiting the production of wheat.
( Zhang et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Fungal resistance: resistance to Fusarium graminearum. Fusarium head blight (FHB) is an economically important disease, affecting both yield and grain quality of maize, wheat and barley.
(Brauer et al., 2020)
SDN1
CRISPR/Cas
Ottawa Research and Development Centre, Canada
Oomycete resistance: increased resistance against soybean root rot disease caused by Phytophthora sojae.
(Liu et al., 2023)
SDN1
CRISPR/Cas
Nanjing Agricultural University, China
Viral resistance: Strong barley yellow dwarf virusses (BYDV) resistance without negative effects on plant growth under field conditions. BYDV threatens efficient and stable production of wheat, maize, barley and oats.
(Wang et al., 2023)
SDN1
CRISPR/Cas
Henan Agricultural University
The Shennong Laboratory
Chinese Academy of Agricultural Sciences, China
Sensitive detection of two fungal pathogens (Diaporthe aspalathi and Diaporthe caulivora) that cause soybean stem canker. The method requires minimal equipment as well as training and shows potential for on-site screening.
( Sun et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Inspection and Quarantine
Shenyang Agricultural University
Huangpu Customs Technology Center
Technical Center of Hangzhou Customs
Dalian University, China
Fungal resistance: Enhanced resistance to powdery mildew, a fungal disease causing great losses in soybean yield and seed quality.
(Bui et al., 2023)
SDN1
CRISPR/Cas
Institute of Biotechnology
University of Science and Technology of Hanoi
Vietnam Academy of Science and Technology
Vietnam Academy of Agriculture Science, Vietnam
Washington University in St. Louis
University of Missouri, USA

Nematode resistance: resistance against soybean cyst nematode. Plant-parasitic nematode pests result in billions of dollars in realized annual losses worldwide.
(Usovsky et al., 2023)
SDN1
CRISPR/Cas
University of Missouri
University of Georgia
Beltsville Agricultural Research Center, USA
Fungal resistance: stripe rust resistance, caused by Puccinia striiformis f. sp. tritici. In appropriate environmental conditions and susceptible varieties, stripe rust can cause huge grain yield and quality loss.
(Li et al., 2023)
SDN1
CRISPR/Cas
Fudan University
Chinese Academy of Sciences
University of the Chinese Academy of Sciences
China Agricultural University
Guangzhou University
School of Life Science
Shandong Academy of Agricultural Sciences
Ministry of Agriculture
National Engineering Research Center for Wheat and Maize
Sichuan Agricultural University
Nanjing Agricultural University, China
Université Paris Cité
Université Paris-Saclay, France
Fungal resistance: enhanced resistance against rust caused by Puccinia striiformis f. sp. tritici and powdery mildew caused by Blumeria graminis f. sp. tritici., while also increasing yield.
(Liu et al., 2024)
SDN1
CRISPR/Cas
Southwest University
Yangtze University, China
University of Cologne, Germany
University of Maryland
Nematode resistance: Enhanced resistance to more virulent soybean cyst nematode (SCN). SCN is the most devastating post to soybean crop yields in the US.
(Wang et al., 2024)
SDN1
CRISPR/Cas
Henan Agricultural University
University of South Carolina, China
Early on site detection of Phytophthora root rot, caused by Phytophthora sojae.
( Li et al., 2024 )
SDN1
CRISPR/Cas
Hainan University
Shanghai Jiao Tong University
China Agricultural University
Post-Entry Quarantine Center for Tropical Plant, China
Fungal resistance: Assay for rapid detection of Diaporthe aspalathi, causal agent of Southern stem canker, which causes huge losses of soybean worldwide.
(Dong et al., 2024)
SDN1
CRISPR/Cas
Hainan University
Sanya Institute of China Agricultural University, China
Viral resistance: resistance against Soybean mosaic virus, which is a very common and destructive pathogenic virus.
(Gao et al., 2024)
SDN1
CRISPR/Cas
Nanjing Agricultural University
Beijing Vocational College of Agriculture
China Agricultural University
Shenyang Agricultural University, China
Viral resistance: enhanced resistance against wheat dwarf virus, which is a causal agent of wheat viral disease and can significantly impact wheat production worldwide.
(Yuan et al., 2024)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Northwest A&
F University, China

Norwegian Institute of Bioeconomy Research, Norway
Rapid detection system for Paracoccus marginatus, an insect that can cause huge crop losses.
( Chen et al., 2024 )
SDN1
CRISPR/Cas
Fujian Academy of Agricultural Sciences, China
UMR ISA, France