Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Sdn Type

Displaying 19 results

Traits related to increased plant yield and growth

High temperature germination. Large increases in the maximum temperature for seed germination to allow for the cultivation of the crop in production areas with higher temperature.
( Bertier et al., 2018 )
SDN1
CRISPR/Cas
University of California, USA
Altered spike architecture and grain treshability to increase grain production.
( Liu et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Bigger grains, increased grain weight.
( Zhang et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Improvement for larger kernel and yield.
( Ma et al., 2015 )
SDN1
CRISPR/Cas
Northwest A &
F University
Chinese Academy of Agricultural Sciences, China
Increased spikelet number and delayed heading date. Two traits that are crucial and correlated to yield in wheat.
( Chen et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Increased yield potential trough improved nitrogen use efficiency. Enhanced tolerance to N starvation, and showed delayed senescence and increased grain yield in field conditions. Lowered use of N fertilizer.
( Zhang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Zhengzhou University, China
Increased grain weight and grain size. Carbohydrate and total protein levels also increased.
( Guo et al., 2021 )
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
University of California, USA
Enhanced photosynthesis and decreased leaf angles for improved plant architecture and high yields.
( An et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Increased leaf yield of lettuce by delaying the onset of flowering.
( Choi et al., 2022 )
SDN1
CRISPR/Cas
Korea Research Institute of Bioscience and Biotechnology
Korea University of Science and Technology, South Korea
Significantly improved photosynthesis and decreased leaf angles. The plant architecture is ideal for dense planting.
( An et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Increased yield: plants produced more tillers and grains than azygous wild-type controls and the total yield was increased up to 15 per cent.
(Holubova et al., 2018)
SDN1
CRISPR/Cas
Palacký University
Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Republic
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Germany
Increase in 1000-grain weight, grain area, grain width, grain length, plant height, and spikelets per spike.
( Errum et al., 2023 )
SDN1
CRISPR/Cas
National Agricultural Research Centre (NARC)
PARC Institute of Advanced Studies in Agriculture (PIASA)
Pakistan Agricultural Research Council, Pakistan
Delay in the appearance of flower buds and increased yield.
( Beracochea et al., 2023 )
SDN1
CRISPR/Cas
Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET)
Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina
Early heading. Heading date is an important agronomic trait that affects climatic adaptation and yield potential.
( Fan et al., 2023 )
SDN1
CRISPR/Cas
Henan Agricultural University, China
Enhanced grain yield and semi-dwarf phenotype by manipulating brassinosteroid signal pathway.
( Song et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University, China
Hard Winter Wheat Genetics Research Unit, USA
Altered root architecture with increased tillers and total grain weight.
( Rahim et al., 2023 )
SDN1
CRISPR/Cas
Quaid-e-Azam University
National Agricultural Research Centre (NARC)
The University of Haripur, Pakistan
King Saud University, Saudi Arabia
Nile University
Ain Shams University, Egypt
Chonnam National University, South Korea
Butterhead plant architecture.
( Xie et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Wuhan Academy of Agricultural Sciences, China
Increased plant height with an earlier heading date.
( Fu et al., 2024 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Henan Normal University
Sichuan Agricultural University
Henan Agricultural University
Shanxi University, China
Increased tiller number.
( Awan et al., 2024 )
SDN1
CRISPR/Cas
National Institute for Biotechnology and Genetic Engineering
Quaid-i-Azam University, Pakistan