Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Displaying 31 results

Traits related to biotic stress tolerance

High resistance to powdery mildew under semi-commercial growth conditions.
( Shnaider et al., 2022 )
SDN1
CRISPR/Cas
Agricultural Research Organization Volcani Center, Israel
Visualization of the early stages of Cassava bacterial blight (CBB) infection in vivo. CBB is caused by Xanthomonas axonopodis pv. Manihotis.
( Veley et al., 2021 )
SDN2
CRISPR/Cas
Donald Danforth Plant Science Center, USA
National Root Crops Research Institute, Nigeria
Viral resistance: reduced cassava brown streak disease (CBSD) symptom severity and incidence. CBSD threatens cassava production in West Africa and is a major constraint on cassava production in East and Central Africa.
(Gomez et al., 2019)
SDN1
CRISPR/Cas
University of California
Donald Danforth Plant Science Center, USA
Virus resistance: Immunity to cucumber vein yellowing virus infection (Ipomovirus) and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus.
(Chandrasekaran et al., 2016)
SDN1
CRISPR/Cas
Volcani Center, Israel
Bacterial resistance: Xanthomonas citri, causing citrus canker, one of the most serious diseases affecting the global citrus industry. Citrus is the most produced fruit in the world.
(Jia et al., 2016)
SDN1
CRISPR/Cas
University of Florida, USA
Bacterial resistance: resistance to Xanthomonas citri, a pathogen causing citrus canker. Citrus canker is one of the most devastating citrus diseases worldwide, causing canker symptoms. Generating disease-resistant varieties is one of the most efficient and environmentally friendly measures for controlling canker.
(Jia et al., 2021)
SDN1
CRISPR/Cas
University of Florida
Citrus Research and Education Center, USA
Viral resistance: Increased resistance against watermelon mosaic virus (WMV), papaya ringspot virus (PRSV), and zucchini yellow mosaic virus (ZYMV).
(Fidan et al., 2023)
SDN1
CRISPR/Cas
Akdeniz University
Research and Development Department AD ROSSEN Seeds, Turkey
Rapid detection of Sclerotium rolfsii, the causal agent of stem and root rot disease. This technique is effective for identification of pathogens, with potential for on-site testing.
( Changtor et al., 2023 )
SDN1
CRISPR/Cas
Naresuan University, Thailand
Fungal resistance: broad-spectrum stress tolerance including Pseudoperonospora cubernsis (P. cubensis) resistance. P. cubensis is the causal agent of cucurbit downy mildew, responsible for devastating losses worldwide of cucumber, cantaloupe, pumpkin, watermelon and squash.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA
Fungal resistance: increased resistance against powdery mildew, a destructive disease that threatens cucumber production globally.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California Davis, USA
Wageningen University &
Research, The Netherlands

Traits related to abiotic stress tolerance

Broad-spectrum stress tolerance: enhanced low temperature, salinity, Pseudoperonospora cubensis and water-deficit tolerance.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA

Traits related to improved food/feed quality

Boosted cytokinin biosynthesis and elevated cucumber fruit wart formation. Warty fruit is an important quality trait that greatly affects market value and fruit appearance.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
High-amylose content (up to 56% in apparent amylose content) and resistant starch (up to 35%).
( Luo et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Shanghai Sanshu Biotechnology Co.,
Guangxi Subtropical Crops Research Institute, China
Regulate cucumber fruit wart formation. Warty fruit in cucumber is an important quality trait that greatly affects fruit appearance.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University, China
Attenuated toxic cyanogen production. Cassava produces toxic cyanogenic compounds and requires food processing for safe consumption.
( Gomez et al., 2021 )
SDN1
CRISPR/Cas
University of California
Donald Danforth Plant Science Center
Lawrence Berkeley National Laboratory
Okinawa Institute of Science and Technology Graduate University
Chan-Zuckerberg BioHub, USA
Reduce or eliminate amylose content in root starch. Amylose influences the physicochemical properties of starch during cooking and processing.
( Bull et al., 2018 )
SDN1
CRISPR/Cas
Institute of Molecular Plant Biology, Switzerland
Increased vitamin C content, increased oxidation stress tolerance and increased ascorbate content.
( Zhang et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Nattokinase (NK) producing cucumber. NK is effective in the prevention and treatment of cardiovascular disease.
( Ni et al., 2023 )
SDN2
CRISPR/Cas
Xuzhou University of Technology
Nankai University, China

Traits related to increased plant yield and growth

Only female flowers. Allows earlier production of hybrids, higher yield, and more concentrated fruit set.
( Hu et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences,
China
High temperature germination. Large increases in the maximum temperature for seed germination to allow for the cultivation of the crop in production areas with higher temperature.
( Bertier et al., 2018 )
SDN1
CRISPR/Cas
University of California, USA
Increased spine density. The “numerous spines (ns)” cucumber varieties are popular in Europe and West Asia.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Enhanced photosynthesis and decreased leaf angles for improved plant architecture and high yields.
( An et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Increased leaf yield of lettuce by delaying the onset of flowering.
( Choi et al., 2022 )
SDN1
CRISPR/Cas
Korea Research Institute of Bioscience and Biotechnology
Korea University of Science and Technology, South Korea
Significantly improved photosynthesis and decreased leaf angles. The plant architecture is ideal for dense planting.
( An et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Delay in the appearance of flower buds and increased yield.
( Beracochea et al., 2023 )
SDN1
CRISPR/Cas
Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET)
Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina
Butterhead plant architecture.
( Xie et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Wuhan Academy of Agricultural Sciences, China

Traits related to industrial utilization

Male sterility. Important genetic resources for commercial hybrid seed production.
( Zhang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences,
Accelerate flowering, a rare event under glasshouse conditions. Modified starch.
( Bull et al., 2018 )
SDN3
CRISPR/Cas
Institute of Molecular Plant Biology, Switzerland

Traits related to herbicide tolerance

Herbicide tolerance: glyphosate
(Hummel et al., 2017)
SDN3
CRISPR/Cas
Donald Danforth Plant Science Center, St. Louis, USA

Traits related to product color/flavour

Albino phenotype.
( Huang et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Forestry, China

Traits related to storage performance

Extended root shelf-life, which decreases its wastage.
( Mukami et al., 2023 )
SDN1
CRISPR/Cas
Kenyatta University
Jomo Kenyatta University of Agriculture Technology
Pwani University Kilifi, Kenya