Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 20 results

Traits related to biotic stress tolerance

Fungal resistance: increased resistance to Erysiphe necator, causing powdery mildew in grape cultivar. The pathogen infects all green tissues and berries, leading to dramatic losses in yield and berry quality.
(Malnoy et al., 2016)
SDN1
CRISPR/Cas
Fondazione Edmund Mach, Italy
ToolGen Inc.
Institute for Basic Science
Seoul National University, South Korea
Viral resistance: Resistance against Grapevine leafroll-associated virus 3 (GLRaV-3), which is one of the causal agents of grapevine leafroll disease (GLD). GLD severely impacts grapevine production.
(Jiao et al., 2022)

CRISPR/Cas
Northwest A&
F University, China
Fungal resistance: enhanced resistance to powdery mildew (Erysiphe necator), a major fungal disease, threatening one of the most economically valuable horticular crops.
(Wan et al., 2020)
SDN1
CRISPR/Cas
Ministry of Agriculture, China
Northwest A&
F University
University of Maryland College Park, USA
Bacterial resistance: Xanthomonas citri, causing citrus canker, one of the most serious diseases affecting the global citrus industry. Citrus is the most produced fruit in the world.
(Jia et al., 2016)
SDN1
CRISPR/Cas
University of Florida, USA
Bacterial resistance: resistance to Xanthomonas citri, a pathogen causing citrus canker. Citrus canker is one of the most devastating citrus diseases worldwide, causing canker symptoms. Generating disease-resistant varieties is one of the most efficient and environmentally friendly measures for controlling canker.
(Jia et al., 2021)
SDN1
CRISPR/Cas
University of Florida
Citrus Research and Education Center, USA
Fungal resistance: increased resistance to Botrytis cinerea.
(Wang et al., 2018)
SDN1
CRISPR/Cas
Northwest A&
F University and Ministry of Agriculture, China
Fungal resistance: effective reduction of susceptibility against downy mildew by increasing salicylic acid levels. The pathogen can devastate individual vineyards and in some cases also affect production from entire regions.
(Giacomelli et al., 2023)
SDN1
CRISPR/Cas
Research and Innovation Centre
Fondazione Edmund Mach, Italy
Enza Zaden
Hudson River Biotechnology, The Netherlands
Plant parasitic resitance: Broomrape resistant plants. Broomrape (Orobanche cumana Wallr) threatens the sunflower production in countries in Central and Eastern Europe as well as in Spain, Turkey, Israel, Iran, Kazakhstan, and China.
(Yildirim et al., 2023)
SDN1
CRISPR/Cas
Department of Molecular Bioloqy and Genetics Ondokuz Mayıs University
Sunflower Institute of Field and Vegetable Crops
Department of Biomedical Engineering Akdeniz University, Turkey
Fungal resistance: Decreased susceptibility to Plasmopara viticola, the causing agent of the grapevine downy mildew.
(Djennane et al., 2023)
SDN1
CRISPR/Cas
Université de Strasbourg
Institut Jean-Pierre Bourgin (IJPB), France
Fungal resistance: reduced symptoms caused by a powedry mildew infection.
(Olivares et al., 2021)
SDN1
CRISPR/Cas
National Institute of Agriculture Research, Chile

Traits related to abiotic stress tolerance

Reduced stomatal density. Intrinsic water-use efficiency was significantly impacted under both well-watered and drought conditions, making reduced stomatal density as a preferable trait.
( Clemens et al., 2022 )
SDN1
CRISPR/Cas
University of California
San Diego State University, USA

Traits related to improved food/feed quality

Low tartaric acid.
( Ren et al., 2016 )
SDN1
CRISPR/Cas
University of Chinese Academy of Sciences
Chinese Academy of Sciences, China
Promoted anthocyanin accumulation. Anthocyanins are plant secondary metabolites with a variety of biological functions.
( Tu et al., 2022 )
SDN1
CRISPR/Cas
Northwest A&
F University, China
Removing the major allergen to tackle food allergies.
( Assou et al., 2021 )
SDN1
CRISPR/Cas
Leibniz Universität Hannover
Technische Universität Braunschweig, Germany
Enhanced fatty acid composition: high oleic acid content. High oleic sunflower is desirable because of health benefits and industrial use.
(Uslu et al., 2022)
SDN1
CRISPR/Cas
Marmara University
Gebze Technical University, Turkey
Seeds low in glucosinolate content and other plant parts high in glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock, they also play a role in plant defence.
( Mann et al., 2023 )
SDN1
CRISPR/Cas
National Institute of Plant Genome Research
University of Delhi South Campus, India

Traits related to increased plant yield and growth

Increased seed number per silique, which increases the mustard yield per plant.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China

Traits related to product color/flavour

Albino phenotype.
( Charrier et al., 2019 )
SDN1
CRISPR/Cas
Université d'
Angers, France
Improved aroma, flavour and fatty acid (FA) profiles of pea seeds.
( Bhowmik et al., 2023 )
SDN1
CRISPR/Cas
National Research Council Canada (NRC)
University of Calgary
University of Saskatchewan
Agriculture and Agri-Food Canada (AAFC)
St. Boniface Hospital Research, Canada
John Innes Centre, UK
A significant reduction of saponins. Saponins are a source of bitter, and metallic off-flavors in products containing peas.
( Hodgins et al., 2024 )
SDN1
CRISPR/Cas
Universityof Calgary
Universityof Saskatchewan
National Research Council of Canada, Canada