Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 52 results

Traits related to biotic stress tolerance

Fungal resistance: Enhanced resistance to the pathogen Sclerotinia sclerotiorum.
(Sun et al., 2018)
SDN1
CRISPR/Cas
Yangzhou University, China
Fungal resistance: contribute to Sclerotinia sclerotiorum resistance.
(Zhang et al., 2022)
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Oilseed rape mutant with non-abscising floral organs. Clerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum is a detrimental fungal disease for oilseed rape. Petal infection is crucial to the prevalence of SSR in oilseed rape. Oilseed rape varieties with abscission-defective floral organs were predicted to be less susceptible to Sclerotinia infection and to have a longer flowering period to enhance tourism income.
( Wu et al., 2022 )
SDN1
CRISPR/Cas
Yangzhou University, China
Fungal resistance: reduced susceptibility to Verticillium longisporum, a pathogen causing Verticillium stem striping. No fungicide treatments are currently available to control this disease.
(Pröbsting et al., 2020)
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Institut für Zuckerrübenforschung
NPZ Innovation GmbH, Germany
Bacterial resistance: Xanthomonas citri, causing citrus canker, one of the most serious diseases affecting the global citrus industry. Citrus is the most produced fruit in the world.
(Jia et al., 2016)
SDN1
CRISPR/Cas
University of Florida, USA
Bacterial resistance: resistance to Xanthomonas citri, a pathogen causing citrus canker. Citrus canker is one of the most devastating citrus diseases worldwide, causing canker symptoms. Generating disease-resistant varieties is one of the most efficient and environmentally friendly measures for controlling canker.
(Jia et al., 2021)
SDN1
CRISPR/Cas
University of Florida
Citrus Research and Education Center, USA
Visual detection of brassica yellows virus (BrYV), an economically important virus on cruciferous species. This assay allows for convenient, portable, rapid, low-cost, highly sensitive and specific detection and has great potential for on-site monitoring of BrYV.
( Xu et al., 2023 )
SDN1
CRISPR/Cas
Guizhou University, China
Resistance against a protist pathogen: stable resistance against clubroot disease. Clubroot disease is caused by the protist Plasmodiophora brassicae Woronin and can result in a 10-15% yield loss in Brassica species as well as related crops.
(Hu et al., 2023)
SDN1
CRISPR/Cas
Saskatoon Research and Development Centre, Canada
Fungal resistance: Reduced susceptibility to Verticillium longisporum, fungal pathogen that causes stem striping in Brassica napus and leads to huge yield losses.
(Ye et al., 2024)
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Institut für Zuckerrübenforschung
Hohenlieth-Hof, NPZ Innovation GmbH, Germany
Aswan University, Egypt
Fujian Agriculture and Forestry University, China

Traits related to abiotic stress tolerance

Enhanced drought tolerance
( Wu et al., 2020 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Reduction in cadmium accumulation. Cadmium is a heavy metal, harmful for human health.
( Yao et al., 2022 )
SDN1
CRISPR/Cas
Sichuan University
Science and Technology Innovation Center of Sichuan Modern Seed Industry Group, China
Improved drought tolerance.
( Linghu et al., 2023 )
SDN1
CRISPR/Cas
Hybrid Rapeseed Research Center of Shaanxi Province
Northwest A &
F University, China

Traits related to improved food/feed quality

Improved fatty acid content: increased content of oleic acid, reduced erucic acid levels and slightly decreased polyunsaturated fatty acids content. Fatty acid composition is important for human health and shelf life.
(Shi et al., 2022)
SDN1
CRISPR/Cas
Zhejiang Academy of Agricultural Sciences, China
Modified fatty acid profile: increased oleic acid, decreased linoleic and linolenic acid content.
(Huang et al., 2020)
SDN1
CRISPR/Cas
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
Yellow-seed production, a desirable trait with great potential for improving seed quality in Brassica crops. The formation of seed colour is due to the deposition of the oxidized form of a flavonoid, called proanthocyanidins (PA). Yellow seeds have a higher oil content.
( Zhai et al., 2019 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Removing the major allergen to tackle food allergies.
( Assou et al., 2021 )
SDN1
CRISPR/Cas
Leibniz Universität Hannover
Technische Universität Braunschweig, Germany
Reduction of phytic acid (PA) in seeds. PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Sashidhar et al., 2020 )
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Max-Planck-Institute for Evolutionary Biology, Germany
Altered lignin composition: decreased syringyl monolignol / guaiacylmonolignol (S/G) ratio. The monolignol ratio has been proposed to affect biomass recalcitrance and the resistance to plant disease.
(Cao et al., 2021)
SDN1
CRISPR/Cas
SouthwestUniversity, China
University of Wisconsin, USA
Increasing seed oil content (SOC).
( Zhang et al., 2022 )
SDN1
CRISPR/Cas
Huazhong University of Science and Technology, China
Improved fatty acid composition. The content and abundance of fatty acids play an important role in nutritional and processing applications of oilseeds.
( Okuzaki et al., 2018 )
SDN1
CRISPR/Cas
Tamagawa University
Osaka Prefecture University
Tamagawa University, Japan
Decreases in palmitic acid, increased total C18 and reduced total saturated fatty acid contents. Reduced saturated fat content is connected to lowered cardiovascular disease rate.
( Gupta et al., 2012 )
SDN1
ZFN
Dow AgroSciences
Sangamo BioSciences, USA
Reduced flavonoids and improved fatty acid composition with higher linoleic acid and linolenic acid, valuable for rapeseed germplasm and breeding. The genetic improvement has great significance in the economic value of rapeseeds.
( Xie et al., 2020 )
SDN1
CRISPR/Cas
Yangzhou University
The Ministry of Education of China, China
University of Western Australia, Australia
High-oleic acid content. Oleic acid has increased oxidative stability compared to linolenic and linoleic acid, improving fuel stability and the oil's suitability for high-temperature food applications, for example frying.
( Jarvis et al., 2021 )
SDN1
CRISPR/Cas
Illinois State University
University of North Texas
University of Nebraska-Lincoln, USA
Low erucic acid (EA) content. Composition of fatty acids affects the edible and processing quality of vegetable oils. EA is potentially to cause health problems.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Improved seed oil content: increased levels of monounsaturated fatty acids and decreased levels of polyunsaturated fatty acids.
(Wang et al., 2022)
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
National Research Council Canada, Canada
Seeds low in glucosinolate content and other plant parts high in glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock, they also play a role in plant defence.
( Mann et al., 2023 )
SDN1
CRISPR/Cas
National Institute of Plant Genome Research
University of Delhi South Campus, India

Traits related to increased plant yield and growth

Increased shatter resistance to avoid seed loss during mechanical harvest.
( Braatz et al., 2017 )
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel, Germany
Increased seeds number per husk, higher seed weight.
( Yang et al., 2018 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Confer shoot architectural changes for increased resource inputs to increase crop yield.
( Stanic et al., 2021 )
SDN1
CRISPR/Cas
University of Calgary, Canada
SRM Institute of Technology, India
Improve plant architecture to increase yield. Plant height and branch number are directly correlated with yield.
( Zheng et al., 2020 )
SDN1
CRISPR/Cas
Ministry of Agriculture, China
Wilkes University, USA
Semi-dwarf phenotype and compact architecture to increase yield. Plant height and branch angle are the major architectural factors determining yield.
( Fan et al., 2021 )
SDN1
CRISPR/Cas
Ministry of Agriculture and Rural Affairs, China
Wilkes University, USA
Increased seed number per silique, which increases the mustard yield per plant.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Early-flowering varieties. The timing of flowering is an important event in the life cycle of flowering plants.
( Jiang et al., 2018 )
SDN1
CRISPR/Cas
Hunan Agricultural University, China
Université de Strasbourg, France
Increased seed oil content (SOC). SOC is a major determinant of yield and quality.
( Karunarathna et al., 2020 )
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel, Germany
Zhejiang University, China
Enlarged leaf and petal sizes resulting in bigger flowers. The size of a floral organ is one of the ornamental traits of strawberry.
( Zhao et al., 2023 )
SDN1
CRISPR/Cas
Shandong Agricultural University, China

Traits related to industrial utilization

Establishment of maternal haploid induction. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Zhong et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Wageningen University and Research, The Netherlands
Manipulation of flowering time to develop cultivars with desired maturity dates. Stabilization of flowering time and period supports efficient mechanised harvesting.
( Ahmar et al., 2021 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Self-incompatibility to prevent inbreeding in hermaphrodite angiosperms via the rejection of self-pollen.
( Dou et al., 2021 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Generating genic male sterility lines (GMS). GMS can promote heterosis in rapeseed. Compared with other approaches, GMS brings about nearly complete male sterility to a hybrid breeding program.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Northwest A&
F University
Hybrid Rapeseed Research Centre of Shaanxi Province, China
Reversible complete male sterility. Very precise hormone mediated control of male fertility transition showed great potential for hybrid seed production in Brassica species crops.
( Cheng et al., 2023 )
SDN1
CRISPR/Cas
Ministry of Agriculture and Rural Affairs
Henan Normal University, China
Male sterility.
( Tu et al., 2024 )
SDN1
CRISPR/Cas
Zhejiang University
Jiaxing Academy of Agricultural Sciences, China
Male sterility.
( Shen et al., 2024 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Hubei Hongshan Laboratory, China

Traits related to herbicide tolerance

Herbicide tolerance: AHAS-inhibiting
(Gocal et al., 2015)

ODM
Cibus, Canada
Cibus, USA
Glyphosate
( Wang et al., 2021 )

CRISPR/Cas
Huazhong Agricultural University
Anhui Academy of Agricultural Sciences, China
Tribenuron methyl
( Wu et al., 2020 )

BE
Yangzhou University
Shanghai Normal University, China

Traits related to product color/flavour

Altered color of petals and leaves.
( Li et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Hubei Hongshan Laboratory, China
Albino phenotype.
( Wilson et al., 2019 )
SDN1
CRISPR/Cas
NIAB EMR, UK
Fruit coloration. Fruit color affects consumer preference and is one of the breeding objectives of great interests. For example, white-fruited cultivars are sold at a much higher price than red-fruited cultivars.
( Gao et al., 2020 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
University of Maryland, USA
Yellow colored seed.
( Huang et al., 2023 )
SDN1
CRISPR/Cas
Hunan Academy of Agricultural Sciences
Hunan University of Science and Technology
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, China

Traits related to storage performance

Improved strawberry fruit firmness. The postharvest shelf life is highly limited by the loss of firmness, making firmness one of the most important fruit quality traits.
( López-Casado et al., 2023 )
SDN1
CRISPR/Cas
Universidad de Málaga
Universidad de Córdoba, Spain
The fruit remains green and shows higher firmness as well as no early fermentation. This results in extended shelf-life which could reduce food loss and contribute to food security.
( Nonaka et al., 2023 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan
Delayed fruit ripening.
( Santo Domingo et al., 2024 )
SDN1
CRISPR/Cas
Centre for Research in Agricultural Genomics (CRAG)
Institute for Integrative Systems Biology (I2SysBio)
Institut de Recerca i Tecnologia Agroalimentaries (IRTA), Spain