Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 10 results

Traits related to biotic stress tolerance

Viral resistance: Enhanced resistance to sweet potato virus disease (SPVD). SPVD is caused by the co-infection of sweet potato chlorotic stunt virus (SPCSV) and sweet potato feathery mottle virus.
(Yu et al., 2021)
SDN1
CRISPR/Cas
Jiangsu Normal University
Jiangsu Academy of Agricultural Sciences
Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, China

Traits related to improved food/feed quality

Improved starch quality. Reduced amylopectin and increased amylose percentage.
( Wang et al., 2019 )
SDN1
CRISPR/Cas
Shanghai Institutes for Biological Sciences
Shanghai Sanshu Biotechnology Co. LTD
Chinese Academy of Science, China
University of Kentucky, USA
Removing the major allergen to tackle food allergies.
( Assou et al., 2021 )
SDN1
CRISPR/Cas
Leibniz Universität Hannover
Technische Universität Braunschweig, Germany
Glucoraphanin(GR)-enriched broccoli. Broccoli contains important nutritional components and beneficial phytochemicals. GR, a major glucosinolate (GSL), protects the body against several chronic diseases.
( Kim et al., 2022 )
SDN1
CRISPR/Cas
Sejong University
Jeonbuk National University
Korea Research Institute of Bioscience and Biotechnology
Asia Seed Company Limited, South Korea
Improvement of starch quality.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Science

Shanghai Sanshu Biotechnology Co.
LTD, China
University of Kentucky, USA
Glossy green phenotype and reduced cuticular wax load.
( Liu et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Hunan Agricultural University
Tianjin Kernel Vegetable Research Institute, China
Seeds low in glucosinolate content and other plant parts high in glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock, they also play a role in plant defence.
( Mann et al., 2023 )
SDN1
CRISPR/Cas
National Institute of Plant Genome Research
University of Delhi South Campus, India

Traits related to increased plant yield and growth

Increased seed number per silique, which increases the mustard yield per plant.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China

Traits related to product color/flavour

Albino phenotype.
( Yeap et al., 2021 )
SDN1
CRISPR/Cas
Sime Darby Plantation Technology Centre Sdn. Bhd.
Sime Darby Plantation Research Sdn. Bhd., Malaysia
Albino phenotype.
( Charrier et al., 2019 )
SDN1
CRISPR/Cas
Université d'
Angers, France