Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Displaying 18 results

Traits related to biotic stress tolerance

Viral resistance: Reduced viral load and symptoms after bean yellow dwarf virus (BeYDV) infection.
(Baltes et al., 2015)
SDN1
CRISPR/Cas
University of Minnesota
The Ohio State University, USA
Institute of Biophysics ASCR, Czech Republic
Visual detection of maize chlorotic mottle virus (MCMV), one of the important quarantine pathogens in China. This novel method is specific, rapid, sensitive and does not require special instruments and technical expertise.
( Duan et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University
Yazhou Bay Science and Technology City, China
Alexandria University, Egypt
Confered resistance to ear rot caused by Fusarium verticillioides.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
National Key Facility for Crop Gene Resources and Genetic Improvement
Hainan Yazhou Bay Seed Lab, China
Fungal resistance: increased resistance to southern leaf blight (SLB), caused by the necrotrophic fungal pathogen Cochliobolus heterostrophus (anamorph Bipolaris maydis). SLB is a major foliar disease which causes significant yield losses in maize worldwide.
(Chen et al., 2023)
SDN1
CRISPR/Cas
Northwest A&
F University, China
Corteva AgriscienceTM
USDA-ARS
North Carolina State University, USA
Fungal resistance: decreased susceptibility to Ustilago maydis, causing smut. The pathogen causes galls on all aerial parts of the plant, impacting crop yield and quality.
(Pathi et al., 2020)
SDN1
CRISPR/Cas
Leibniz Institute of Plant Genetics and Crop Plant Research, Germany
Visualization of the early stages of Cassava bacterial blight (CBB) infection in vivo. CBB is caused by Xanthomonas axonopodis pv. Manihotis.
( Veley et al., 2021 )
SDN2
CRISPR/Cas
Donald Danforth Plant Science Center, USA
National Root Crops Research Institute, Nigeria
Viral resistance: reduced cassava brown streak disease (CBSD) symptom severity and incidence. CBSD threatens cassava production in West Africa and is a major constraint on cassava production in East and Central Africa.
(Gomez et al., 2019)
SDN1
CRISPR/Cas
University of California
Donald Danforth Plant Science Center, USA
Viral resistance: resistance to Tomato yellow leaf curl virus (TYLCV). Delayed or reduced accumulation of viral DNA and abolished or attenuated symptoms of infection.
(Ali et al., 2015)
SDN1
CRISPR/Cas
King Abdullah University of Science and Technology, Saudi Arabia
Viral resistance: increased resistance to chickpea chlorotic dwarf virus (CpCDV).
(Malik et al., 2023)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Washington State University, USA
Rapid detection of Sclerotium rolfsii, the causal agent of stem and root rot disease. This technique is effective for identification of pathogens, with potential for on-site testing.
( Changtor et al., 2023 )
SDN1
CRISPR/Cas
Naresuan University, Thailand
Visual detection of Fusarium temperatum, the causal agent of maize stalk rot disease which reduces grain yield and threatens food safety and quality.
This simple detection platform allows high-throughput testing with potential for applications in field detection.
( Li et al., 2023 )
SDN1
CRISPR/Cas
Jilin University
Jilin Agricultural University
Shenzhen Campus of Sun Yat-sen University, China
Detection of Fumonisin B1 (FB1), a common mycotoxin found in agricultural products. FB1 is highly toxic, which can cause oxidative stress response and has been listed as a class 2B carcinogen. The method wx is highly specific and sensitive for FB1, has a rather simple, convenient and fast workflow.
( Qiao et al., 2023 )
SDN1
CRISPR/Cas
Kunming University of Science and Technology, China
Rapid detection of toxigenic Fusarium verticillioides, a phytopathogenic fungus that causes Fusarium ear and stalk rot and poses a threat to maize yields. This accurate and portable detection equipment has great potential for detection of the pathogen, even in areas lacking proper lab equipment.
( Liang et al., 2023 )
SDN1
CRISPR/Cas
Institute of Food Science and Technology
North Minzu University
School of Food Science and Engineering, China
Gembloux Agro-Bio Tech, Belgium
Plant parasitic resitance: Broomrape resistant plants. Broomrape (Orobanche cumana Wallr) threatens the sunflower production in countries in Central and Eastern Europe as well as in Spain, Turkey, Israel, Iran, Kazakhstan, and China.
(Yildirim et al., 2023)
SDN1
CRISPR/Cas
Department of Molecular Bioloqy and Genetics Ondokuz Mayıs University
Sunflower Institute of Field and Vegetable Crops
Department of Biomedical Engineering Akdeniz University, Turkey
Viral resistance: highly efficient resistance to a broad spectrum of geminiviruses. Geminiviruses severely damage economically important crops worldwide.
(Li et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Guangxi University
Zhejiang University, China
Viral resistance: Increased resistance to a potyvirus sugarcane mosaic virus, which causes dwarf mosaic disease in maize, sugarcane and sorghum.
(Xie et al., 2024)
SDN1
CRISPR/Cas
China Agricultural University
Longping Agriculture Science Co. Ltd.
Chinese Academy of Sciences
Yunnan Agricultural University, China
Fungal resistance: More resistance against Bipolaris maydis, the causing agent of Southern corn leaf blight.
(Xie et al., 2024)
SDN1
CRISPR/Cas
Anhui Agricultural University, China
Rapid and on-site detection of the mycotoxin zearalenone.
( Pei et al., 2024 )
SDN1
CRISPR/Cas
Shaanxi University of Science and Technology
Anhui Agricultural University
China National Center for Food Safety Risk Assessment, China
Queen'
s University Belfast, UK