Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 15 results

Traits related to biotic stress tolerance

Viral resistance: Reduced viral load and symptoms after bean yellow dwarf virus (BeYDV) infection.
(Baltes et al., 2015)
SDN1
CRISPR/Cas
University of Minnesota
The Ohio State University, USA
Institute of Biophysics ASCR, Czech Republic
Viral resistance: resistance to Tomato yellow leaf curl virus (TYLCV). Delayed or reduced accumulation of viral DNA and abolished or attenuated symptoms of infection.
(Ali et al., 2015)
SDN1
CRISPR/Cas
King Abdullah University of Science and Technology, Saudi Arabia
Viral resistance: increased resistance to chickpea chlorotic dwarf virus (CpCDV).
(Malik et al., 2023)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Washington State University, USA
Fungal resistance: enhanced resistance against powdery mildew disease.
(Xu et al., 2023)
SDN1
CRISPR/Cas
Kyungpook National University
Rural Development Administration
Sunchon National University, South Korea
Lingnan Normal University, China
Viral resistance: highly efficient resistance to a broad spectrum of geminiviruses. Geminiviruses severely damage economically important crops worldwide.
(Li et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Guangxi University
Zhejiang University, China
Detection assay for brassica yellows virus (BrYV) detection. BrYV is an economically important virus threatening cruciferous species.
( Xu et al., 2024 )
SDN1
CRISPR/Cas
Guizhou University
Guizhou Academy of Tobacco Sciences
Guizhou Academy of Agricultural Sciences, China

Traits related to improved food/feed quality

Removing the major allergen to tackle food allergies.
( Assou et al., 2021 )
SDN1
CRISPR/Cas
Leibniz Universität Hannover
Technische Universität Braunschweig, Germany
Seeds low in glucosinolate content and other plant parts high in glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock, they also play a role in plant defence.
( Mann et al., 2023 )
SDN1
CRISPR/Cas
National Institute of Plant Genome Research
University of Delhi South Campus, India

Traits related to increased plant yield and growth

Improved plant architecture: increased shoot branching, reduced plant height, increased number of leaves and nodes and reduced total plant biomass.
(Gao et al., 2018)
SDN1
CRISPR/Cas
Southwest University
Yunnan Academy of Tobacco Agricultural Sciences, China
Increased seed number per silique, which increases the mustard yield per plant.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Dwarf phenotype.
( Lawrenson et al., 2015 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Murdoch University, USA

Traits related to industrial utilization

Albino phenotype, self-incompatibility and male sterility.
( Ma et al., 2019 )
SDN1
CRISPR/Cas
Southwest University, China
Smaller petunia plants with high flower abundance.
( Abdulla et al., 2024 )
SDN1
CRISPR/Cas
Ondokuz Mayis University, Turkey
Agricultural Research Center (ARC), Egypt

Traits related to product color/flavour

Flower color modification to a pale purplish pink flower color compared to the purple violet wild type.
( Yu et al., 2021 )
SDN1
CRISPR/Cas
Hanyang University
Chungnam National University, South Korea

Traits related to storage performance

Enhancement of flowering time. Petunia has become popular in the floriculture industry, however it is sensitive to ethylene, which causes flower senescence.
( Xu et al., 2021 )
SDN1
CRISPR/Cas
Kyungpook National University
Kangwon National University, South Korea