Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Sdn Type

Displaying 19 results

Traits related to biotic stress tolerance

Fungal resistance: Enhanced resistance to the pathogen Sclerotinia sclerotiorum.
(Sun et al., 2018)
SDN1
CRISPR/Cas
Yangzhou University, China
Fungal resistance: increased resistance to Erysiphe necator, causing powdery mildew in grape cultivar. The pathogen infects all green tissues and berries, leading to dramatic losses in yield and berry quality.
(Malnoy et al., 2016)
SDN1
CRISPR/Cas
Fondazione Edmund Mach, Italy
ToolGen Inc.
Institute for Basic Science
Seoul National University, South Korea
Fungal resistance: contribute to Sclerotinia sclerotiorum resistance.
(Zhang et al., 2022)
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Oilseed rape mutant with non-abscising floral organs. Clerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum is a detrimental fungal disease for oilseed rape. Petal infection is crucial to the prevalence of SSR in oilseed rape. Oilseed rape varieties with abscission-defective floral organs were predicted to be less susceptible to Sclerotinia infection and to have a longer flowering period to enhance tourism income.
( Wu et al., 2022 )
SDN1
CRISPR/Cas
Yangzhou University, China
Viral resistance: Resistance against Grapevine leafroll-associated virus 3 (GLRaV-3), which is one of the causal agents of grapevine leafroll disease (GLD). GLD severely impacts grapevine production.
(Jiao et al., 2022)

CRISPR/Cas
Northwest A&
F University, China
Fungal resistance: enhanced resistance to powdery mildew (Erysiphe necator), a major fungal disease, threatening one of the most economically valuable horticular crops.
(Wan et al., 2020)
SDN1
CRISPR/Cas
Ministry of Agriculture, China
Northwest A&
F University
University of Maryland College Park, USA
Bacterial resistance: Enhanced resistance to Xanthomonas campestris pv. musacearum, causing Bananas Xanthomonas wilt (BXW). Overall economic losses caused by Xanthomonas campestris were estimated at 2-8 billion USD over a decade.
(Tripathi et al., 2021)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA), Kenya
Fungal resistance: reduced susceptibility to Verticillium longisporum, a pathogen causing Verticillium stem striping. No fungicide treatments are currently available to control this disease.
(Pröbsting et al., 2020)
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Institut für Zuckerrübenforschung
NPZ Innovation GmbH, Germany
Fungal resistance: increased resistance to Botrytis cinerea.
(Wang et al., 2018)
SDN1
CRISPR/Cas
Northwest A&
F University and Ministry of Agriculture, China
Viral resistance: increased control on viral pathogen Banana streak virus (BSV). The BSV integrates in the banana host genome as endogenous BSV (eBSV). When banana plants are stressed, the eBSV produces infectious viral particles and thus the plant develops disease symptoms.
(Tripathi et al., 2019)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA), Kenya
University of California, USA
Fungal resistance: effective reduction of susceptibility against downy mildew by increasing salicylic acid levels. The pathogen can devastate individual vineyards and in some cases also affect production from entire regions.
(Giacomelli et al., 2023)
SDN1
CRISPR/Cas
Research and Innovation Centre
Fondazione Edmund Mach, Italy
Enza Zaden
Hudson River Biotechnology, The Netherlands
Visual detection of brassica yellows virus (BrYV), an economically important virus on cruciferous species. This assay allows for convenient, portable, rapid, low-cost, highly sensitive and specific detection and has great potential for on-site monitoring of BrYV.
( Xu et al., 2023 )
SDN1
CRISPR/Cas
Guizhou University, China
Resistance against a protist pathogen: stable resistance against clubroot disease. Clubroot disease is caused by the protist Plasmodiophora brassicae Woronin and can result in a 10-15% yield loss in Brassica species as well as related crops.
(Hu et al., 2023)
SDN1
CRISPR/Cas
Saskatoon Research and Development Centre, Canada
Bacterial resistance: resistance against banana Xanthomonas wilt (BXW) disease, caused by Xanthomonas campestris pv. musacearum. BXW forms a great threat to banana cultivation in East and Central Africa.
(Ntui et al., 2023)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture, Kenya
Plant parasitic resitance: Broomrape resistant plants. Broomrape (Orobanche cumana Wallr) threatens the sunflower production in countries in Central and Eastern Europe as well as in Spain, Turkey, Israel, Iran, Kazakhstan, and China.
(Yildirim et al., 2023)
SDN1
CRISPR/Cas
Department of Molecular Bioloqy and Genetics Ondokuz Mayıs University
Sunflower Institute of Field and Vegetable Crops
Department of Biomedical Engineering Akdeniz University, Turkey
Fungal resistance: Decreased susceptibility to Plasmopara viticola, the causing agent of the grapevine downy mildew.
(Djennane et al., 2023)
SDN1
CRISPR/Cas
Université de Strasbourg
Institut Jean-Pierre Bourgin (IJPB), France
Fungal resistance: Reduced susceptibility to Verticillium longisporum, fungal pathogen that causes stem striping in Brassica napus and leads to huge yield losses.
(Ye et al., 2024)
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Institut für Zuckerrübenforschung
Hohenlieth-Hof, NPZ Innovation GmbH, Germany
Aswan University, Egypt
Fujian Agriculture and Forestry University, China
Fungal resistance: reduced symptoms caused by a powedry mildew infection.
(Olivares et al., 2021)
SDN1
CRISPR/Cas
National Institute of Agriculture Research, Chile

Traits related to storage performance

Increased shelf-life. Banana fruit has a high economic importance but will ripen and decay in one week after exogenous ethylene induction. Fast ripening limits its storage, transportation and marketing.
( Hu et al., 2021 )
SDN1
CRISPR/Cas
Guangdong Academy of Agricultural Sciences
Guangdong Laboratory for Lingnan Modern Agriculture, China