Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 24 results

Traits related to biotic stress tolerance

Reduced aphid damage to improve crop resistance to aphids or other insects. Restrict aphid sucking on watermelon.
( Li et al., 2021 )
SDN1
CRISPR/Cas
Beijing Academy of Agricultural and Forestry Sciences, China
Fungal resistance: Fusarium oxysporum f.sp. niveum (FON), one of the most devastaging diseases affecting watermelons. FON progresses along xylem vessels, causing the hollow and dried-out stems.
(Zhang et al., 2020)
SDN1
CRISPR/Cas
Jiangsu Academy of Agricultural Sciences
Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, China
Bacterial resistance: Xanthomonas citri, causing citrus canker, one of the most serious diseases affecting the global citrus industry. Citrus is the most produced fruit in the world.
(Jia et al., 2016)
SDN1
CRISPR/Cas
University of Florida, USA
Bacterial resistance: resistance to Xanthomonas citri, a pathogen causing citrus canker. Citrus canker is one of the most devastating citrus diseases worldwide, causing canker symptoms. Generating disease-resistant varieties is one of the most efficient and environmentally friendly measures for controlling canker.
(Jia et al., 2021)
SDN1
CRISPR/Cas
University of Florida
Citrus Research and Education Center, USA
Fungal resistance: enhanced resistance against powdery mildew disease.
(Xu et al., 2023)
SDN1
CRISPR/Cas
Kyungpook National University
Rural Development Administration
Sunchon National University, South Korea
Lingnan Normal University, China
Sensitive and specific visual detection method for Acidovorax citrulli, an important seed-borne disease of the cucurbits.
( Wang et al., 2024 )
SDN1
CRISPR/Cas
Fuyang Normal University
Anhui Jianzhu University
Southern Subtropicals Grops Research Institute, China

Traits related to improved food/feed quality

Increased sucrose content.
( Ren et al., 2020 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
Capital Normal University
China Agricultural University, China
Cornell University
Robert W. Holley Center for Agriculture and Health, USA
Reduced content of saturated fatty acids: low palmitic and high oleic acid. Great potential for improving peanut oil quality for human health.
(Tang et al., 2022)
SDN1
CRISPR/Cas
Qingdao Agricultural University, China
Decreased seed size and promoted seed germination. To improve consumer experience for flesh-consumed watermelons, no (or small and sparse) seeds are better because the flesh portion is larger.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement, China
Improved fatty acid content: high oleic acid, decreased linoleic acid content. FA composition is important for human health and shelf life.
(Wen et al., 2018)
SDN1
TALENs
Guangdong Academy of Agricultural Sciences, China
Reduced levels of very long chain saturated fatty acids in kernels, which are associated with revalance of atherosclerosis and cardiovascular disease.
( Huai et al., 2024 )
SDN1
CRISPR/Cas
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, China
International Crops Research Institute of the Semi-Arid Tropics (ICRISAT), India
Murdoch University, Australia

Traits related to increased plant yield and growth

Dwarf phenotype to increase yield.
( Zhou et al., 2023 )
SDN1
CRISPR/Cas
Nanchang University
Jiangxi Academy of Agricultural Sciences, China
Dwarfing phenotype.
( Sun et al., 2024 )
SDN1
CRISPR/Cas
Northwest A&
F University
Guangdong Academy of Agricultural Sciences
Shanxi Agricultural University, China

Traits related to industrial utilization

Male sterility.
( Zhang et al., 2021 )
SDN1
CRISPR/Cas
Northwest A&
F University, China
Male sterility. Important genetic resources for commercial hybrid seed production.
( Zhang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences,
Gynoecious phenotype: only female flowers. Advantageous trait for production of hybrid seed by bees under spatial isolation, because it avoids hand emasculation and hand pollination.
(Zhang et al., 2019)
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
Chinese Academy of Agricultural Engineering Planning and Design, China
Establishment of maternal haploid induction. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Tian et al., 2023 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement, China
Smaller petunia plants with high flower abundance.
( Abdulla et al., 2024 )
SDN1
CRISPR/Cas
Ondokuz Mayis University, Turkey
Agricultural Research Center (ARC), Egypt

Traits related to herbicide tolerance

Tribenuron
( Tian et al., 2018 )

BE
Beijing Academy of Agriculture and Forestry Sciences
China Agricultural University, China
Herbicide-resistance (ALS-targeting).
( Shi et al., 2023 )

BE
Henan Biological Breeding Center Co.
The Shennong Laboratory, China

Traits related to product color/flavour

Albino phenotype. Diversity in fruit color. Watermelon is an important fruit croup throughout the world.
( Tian et al., 2016 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
China Agricultural University
Beijing University of Agriculture, China
Flower color modification to a pale purplish pink flower color compared to the purple violet wild type.
( Yu et al., 2021 )
SDN1
CRISPR/Cas
Hanyang University
Chungnam National University, South Korea

Traits related to storage performance

Enhancement of flowering time. Petunia has become popular in the floriculture industry, however it is sensitive to ethylene, which causes flower senescence.
( Xu et al., 2021 )
SDN1
CRISPR/Cas
Kyungpook National University
Kangwon National University, South Korea
Enhanced oleic acid to linoleic acid ratio. This adjusted ratio can improve the shelf life of peanut oil.
( Rajyaguru et al., 2024 )
SDN1
CRISPR/Cas
Junagadh Agricultural University, India