Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Displaying 26 results

Traits related to biotic stress tolerance

Highly significant reduction in susceptibility to fire blight, caused by the bacterium Erwinia amylovora. Apple is one of the most cultivated fruit crops throughout the temperate regions of the world.
( Pompili et al., 2020 )
SDN1
CRISPR/Cas
Università degli Studi di Udine
Fondazione Edmund Mach, Italy
Bacterial resistance: Increased resistance to Erwinia amylovora, causing fire blight disease that threatens the apple and a wide range of ornamental and commercial Rosaceae host plants.
(Malnoy et al., 2016)
SDN1
CRISPR/Cas
Fondazione Edmund Mach, Italy
ToolGen Inc.
Institute for Basic Science
Seoul National University, South Korea
High resistance to powdery mildew under semi-commercial growth conditions.
( Shnaider et al., 2022 )
SDN1
CRISPR/Cas
Agricultural Research Organization Volcani Center, Israel
Virus resistance: Immunity to cucumber vein yellowing virus infection (Ipomovirus) and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus.
(Chandrasekaran et al., 2016)
SDN1
CRISPR/Cas
Volcani Center, Israel
Viral resistance: Increased resistance against watermelon mosaic virus (WMV), papaya ringspot virus (PRSV), and zucchini yellow mosaic virus (ZYMV).
(Fidan et al., 2023)
SDN1
CRISPR/Cas
Akdeniz University
Research and Development Department AD ROSSEN Seeds, Turkey
Fungal resistance: broad-spectrum stress tolerance including Pseudoperonospora cubernsis (P. cubensis) resistance. P. cubensis is the causal agent of cucurbit downy mildew, responsible for devastating losses worldwide of cucumber, cantaloupe, pumpkin, watermelon and squash.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA
Plant parasitic resitance: Broomrape resistant plants. Broomrape (Orobanche cumana Wallr) threatens the sunflower production in countries in Central and Eastern Europe as well as in Spain, Turkey, Israel, Iran, Kazakhstan, and China.
(Yildirim et al., 2023)
SDN1
CRISPR/Cas
Department of Molecular Bioloqy and Genetics Ondokuz Mayıs University
Sunflower Institute of Field and Vegetable Crops
Department of Biomedical Engineering Akdeniz University, Turkey
Fungal resistance: increased resistance against powdery mildew, a destructive disease that threatens cucumber production globally.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California Davis, USA
Wageningen University &
Research, The Netherlands

Traits related to abiotic stress tolerance

Fruits insensitive to the effectss of high temperature stress and with reduced browning phenotype caused by high temperatures.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Northwest A &
F University
College of Horticultural Science and Engineering, China
Broad-spectrum stress tolerance: enhanced low temperature, salinity, Pseudoperonospora cubensis and water-deficit tolerance.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA

Traits related to improved food/feed quality

Boosted cytokinin biosynthesis and elevated cucumber fruit wart formation. Warty fruit is an important quality trait that greatly affects market value and fruit appearance.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Regulate cucumber fruit wart formation. Warty fruit in cucumber is an important quality trait that greatly affects fruit appearance.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University, China
Increased vitamin C content, increased oxidation stress tolerance and increased ascorbate content.
( Zhang et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Nattokinase (NK) producing cucumber. NK is effective in the prevention and treatment of cardiovascular disease.
( Ni et al., 2023 )
SDN2
CRISPR/Cas
Xuzhou University of Technology
Nankai University, China
Enhanced fatty acid composition: high oleic acid content. High oleic sunflower is desirable because of health benefits and industrial use.
(Uslu et al., 2022)
SDN1
CRISPR/Cas
Marmara University
Gebze Technical University, Turkey

Traits related to increased plant yield and growth

Only female flowers. Allows earlier production of hybrids, higher yield, and more concentrated fruit set.
( Hu et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences,
China
High temperature germination. Large increases in the maximum temperature for seed germination to allow for the cultivation of the crop in production areas with higher temperature.
( Bertier et al., 2018 )
SDN1
CRISPR/Cas
University of California, USA
Increased spine density. The “numerous spines (ns)” cucumber varieties are popular in Europe and West Asia.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Enhanced photosynthesis and decreased leaf angles for improved plant architecture and high yields.
( An et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Increased leaf yield of lettuce by delaying the onset of flowering.
( Choi et al., 2022 )
SDN1
CRISPR/Cas
Korea Research Institute of Bioscience and Biotechnology
Korea University of Science and Technology, South Korea
Significantly improved photosynthesis and decreased leaf angles. The plant architecture is ideal for dense planting.
( An et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Reduced seed shattering. Seed shattering is one of the main constraints on grain production in African cultivated rice, which causes severe grain losses during harvest.
( Ning et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University, China
Africa Rice Center, Benin
Delay in the appearance of flower buds and increased yield.
( Beracochea et al., 2023 )
SDN1
CRISPR/Cas
Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET)
Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina
Butterhead plant architecture.
( Xie et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Wuhan Academy of Agricultural Sciences, China

Traits related to industrial utilization

Accelerated domestication of African rice landraces by improving domestication traits such as sheed shattering, lodging and seed yield. The acceleration of the development of high-yield African landrace varieties is important considering that Africa has a strong growing population and prone to food shortage.
( Lacchini et al., 2020 )
SDN1
CRISPR/Cas
University of Milan, Italy
University of Montpellier, France

Traits related to product color/flavour

Albino phenotype and early flowering.
( Charrier et al., 2019 )
SDN1
CRISPR/Cas
Université d'
Angers, France